摘要:
Techniques are provided for gate work function engineering in FIN FET devices using a work function setting material an amount of which is provided proportional to fin pitch. In one aspect, a method of fabricating a FIN FET device includes the following steps. A SOI wafer having a SOI layer over a BOX is provided. An oxide layer is formed over the SOI layer. A plurality of fins is patterned in the SOI layer and the oxide layer. An interfacial oxide is formed on the fins. A conformal gate dielectric layer, a conformal gate metal layer and a conformal work function setting material layer are deposited on the fins. A volume of the conformal gate metal layer and a volume of the conformal work function setting material layer deposited over the fins is proportional to a pitch of the fins. A FIN FET device is also provided.
摘要:
A method of fabricating a nanowire FET device includes the following steps. A SOI wafer is provided having a SOI layer over a BOX. Nanowires and pads are etched in the SOI layer. The nanowires are suspended over the BOX. An interfacial oxide is formed surrounding each of the nanowires. A conformal gate dielectric is deposited on the interfacial oxide. A conformal first gate material is deposited on the conformal gate dielectric. A work function setting material is deposited on the conformal first gate material. A second gate material is deposited on the work function setting material to form at least one gate stack over the nanowires. A volume of the conformal first gate material and/or a volume of the work function setting material in the gate stack are/is proportional to a pitch of the nanowires.
摘要:
In one aspect, a CMOS device is provided. The CMOS device includes a SOI wafer having a SOI layer over a BOX; one or more active areas formed in the SOI layer in which one or more FET devices are formed, each of the FET devices having an interfacial oxide on the SOI layer and a gate stack on the interfacial oxide layer, the gate stack having (i) a conformal gate dielectric layer present on a top and sides of the gate stack, (ii) a conformal gate metal layer lining the gate dielectric layer, and (iii) a conformal workfunction setting metal layer lining the conformal gate metal layer. A volume of the conformal gate metal layer and/or a volume of the conformal workfunction setting metal layer present in the gate stack are/is proportional to a length of the gate stack.
摘要:
Asymmetric FET devices and methods for fabrication thereof that employ a variable pitch gate are provided. In one aspect, a FET device is provided. The FET device includes a wafer; a plurality of active areas formed in the wafer; a plurality of gate stacks on the wafer, wherein at least one of the gate stacks is present over each of the active areas, and wherein the gate stacks have an irregular gate-to-gate spacing such that for at least a given one of the active areas a gate-to-gate spacing on a source side of the given active area is greater than a gate-to-gate spacing on a drain side of the given active area; spacers on opposite sides of the gate stacks; and an angled implant in the source side of the given active area.
摘要:
Asymmetric FET devices and methods for fabrication thereof that employ a variable pitch gate are provided. In one aspect, a method for fabricating a FET device includes the following steps. A wafer is provided. A plurality of active areas is formed in the wafer using STI. A plurality of gate stacks is formed on the wafer, wherein the gate stacks have an irregular gate-to-gate spacing such that for at least a given one of the active areas a gate-to-gate spacing on a source side of the given active area is greater than a gate-to-gate spacing on a drain side of the given active area. Spacers are formed on opposite sides of the gate stacks. An angled implant is performed into the source side of the given active area. A FET device is also provided.
摘要:
Techniques for gate workfunction engineering using a workfunction setting material to reduce short channel effects in planar CMOS devices are provided. In one aspect, a method of fabricating a CMOS device includes the following steps. A SOI wafer is provided having a SOI layer over a BOX. A patterned dielectric is formed on the wafer having trenches therein present over active areas in which a gate stack will be formed. Into each of the trenches depositing: (i) a conformal gate dielectric (ii) a conformal gate metal layer and (iii) a conformal workfunction setting metal layer. A volume of the conformal gate metal layer and/or a volume of the conformal workfunction setting metal layer deposited into a given one of the trenches are/is proportional to a length of the gate stack being formed in the given trench. A CMOS device is also provided.
摘要:
A method of fabricating a nanowire FET device includes the following steps. A SOI wafer is provided having a SOI layer over a BOX. Nanowires and pads are etched in the SOI layer. The nanowires are suspended over the BOX. An interfacial oxide is formed surrounding each of the nanowires. A conformal gate dielectric is deposited on the interfacial oxide. A conformal first gate material is deposited on the conformal gate dielectric. A work function setting material is deposited on the conformal first gate material. A second gate material is deposited on the work function setting material to form at least one gate stack over the nanowires. A volume of the conformal first gate material and/or a volume of the work function setting material in the gate stack are/is proportional to a pitch of the nanowires.
摘要:
Techniques for gate workfunction engineering using a workfunction setting material to reduce short channel effects in planar CMOS devices are provided. In one aspect, a method of fabricating a CMOS device includes the following steps. A SOI wafer is provided having a SOI layer over a BOX. A patterned dielectric is formed on the wafer having trenches therein present over active areas in which a gate stack will be formed. Into each of the trenches depositing: (i) a conformal gate dielectric (ii) a conformal gate metal layer and (iii) a conformal workfunction setting metal layer. A volume of the conformal gate metal layer and/or a volume of the conformal workfunction setting metal layer deposited into a given one of the trenches are/is proportional to a length of the gate stack being formed in the given trench. A CMOS device is also provided.
摘要:
Asymmetric FET devices and methods for fabrication thereof that employ a variable pitch gate are provided. In one aspect, a FET device is provided. The FET device includes a wafer; a plurality of active areas formed in the wafer; a plurality of gate stacks on the wafer, wherein at least one of the gate stacks is present over each of the active areas, and wherein the gate stacks have an irregular gate-to-gate spacing such that for at least a given one of the active areas a gate-to-gate spacing on a source side of the given active area is greater than a gate-to-gate spacing on a drain side of the given active area; spacers on opposite sides of the gate stacks; and an angled implant in the source side of the given active area.
摘要:
A nanowire FET device includes a SOI wafer having a SOI layer over a BOX, and a plurality of nanowires and pads patterned in the SOI layer, wherein the nanowires are suspended over the BOX; an interfacial oxide surrounding each of the nanowires; and at least one gate stack surrounding each of the nanowires, the gate stack having (i) a conformal gate dielectric present on the interfacial oxide (ii) a conformal first gate material on the conformal gate dielectric (iii) a work function setting material on the conformal first gate material, and (iv) a second gate material on the work function setting material. A volume of the conformal first gate material and/or a volume of the work function setting material in the gate stack are/is proportional to a pitch of the nanowires.