Abstract:
A method of providing secure communications between a base station, a relay station, and a mobile station in a communication network includes receiving, by the relay station, an unsolicited security key from the base station; receiving, by the relay station, a signaling message from the mobile station; and authenticating, by the relay station, the mobile station using the security key. A method of providing secure communications between a base station, a relay station, and a mobile station in a communication network includes receiving, by the relay station, a signaling message from the mobile station; transmitting, by the relay station, subsequent to receiving the signaling message, a security key request to the base station; receiving, by the relay station, a security key from the base station in response to the previously sent security key request; and authenticating, by the relay station, the mobile station using the received security key.
Abstract:
A method and system for network data transmitting in a communication system includes transmitting a data from at least one transmission node to at least one receiving node of a transmission-receiving group among the plurality of communication nodes by utilizing a node ID, the node ID of communication node in the group is being assigned by a N-carry operation of a determined number N.
Abstract:
A method of providing secure communications between a base station, a relay station, and a mobile station in a communication network includes receiving, by the relay station, an unsolicited security key from the base station; receiving, by the relay station, a signaling message from the mobile station; and authenticating, by the relay station, the mobile station using the security key. A method of providing secure communications between a base station, a relay station, and a mobile station in a communication network includes receiving, by the relay station, a signaling message from the mobile station; transmitting, by the relay station, subsequent to receiving the signaling message, a security key request to the base station; receiving, by the relay station, a security key from the base station in response to the previously sent security key request; and authenticating, by the relay station, the mobile station using the received security key.
Abstract:
A method of providing secure communications between a base station, a relay station, and a mobile station in a communication network includes receiving, by the relay station, an unsolicited security key from the base station; receiving, by the relay station, a signaling message from the mobile station; and authenticating, by the relay station, the mobile station using the security key. A method of providing secure communications between a base station, a relay station, and a mobile station in a communication network includes receiving, by the relay station, a signaling message from the mobile station; transmitting, by the relay station, subsequent to receiving the signaling message, a security key request to the base station; receiving, by the relay station, a security key from the base station in response to the previously sent security key request; and authenticating, by the relay station, the mobile station using the received security key.
Abstract:
A method and system for network data transmitting in a communication system includes transmitting a data from at least one transmission node to at least one receiving node of a transmission-receiving group among the plurality of communication nodes by utilizing a node ID, the node ID of communication node in the group is being assigned by a N-carry operation of a determined number N.
Abstract:
A method for application layer gateway (ALG) assisted local IP access (LIPA) at a base station by network address translation (NAT) allows IP capable UEs connected via HeNB or other kinds of Femto cell base station to use LIPA to establish multimedia session with other IP capable entities in the same IP network by NAT. The method relays a LIPA request to IMS, determines whether the terminating entity residing in the same IP network or not, and determines if the originating and terminating entities are allowed to use LIPA, and modifies the transport address information accordingly to facilitate signaling and packet routing. The method also provides the capability to apply different charging policies for LIPA and non-LIPA usages.
Abstract:
Apparatus for coupling one or more machine-to-machine (M2M) devices to a wireless network, including: a first network interface controller (NIC) module configured to communicate with the M2M devices; an M2M controller unit coupled to the first NIC module, the M2M controller unit including a database and a controller, the controller being configured to store information regarding the M2M devices in the database and to retrieve information regarding the M2M devices from the database; and a second NIC module coupled to the M2M controller unit, the second NIC module including an M2M enable unit configured to send the information retrieved by the controller to the wireless network.
Abstract:
A wireless communication method for providing zone boundary detection performed by a controller managing communications within a multicast/broadcast service (MBS) zone. The method includes assigning to a boundary paging group a first base station communicating within the MBS zone and near a boundary of the MBS zone. The method further includes transmitting, through a second base station which covers a mobile station, to the mobile station information indicating that the boundary paging group corresponds to locations near the boundary of the MBS zone.
Abstract:
A group authentication method adaptable to a communication system is disclosed. The communication system includes a user group, a serving network, and a home network. The user group includes at least one mobile station. The home network pre-distributes a group authentication key to itself and all the mobile stations in the same user group and generates a mobile station authentication key for each mobile station. The home network generates a group list for recording related information of the user group. The home network has a database for recording the group list. The serving network has a database for recording the group list and a group authentication data received from the home network. The group authentication method includes following steps. The serving network performs an identification action to a mobile station. The communication system performs a full authentication action or a local authentication action according to the result of the identification action.
Abstract:
The invention relates to a SIM-based authentication method capable of supporting inter-AP fast handover, which can decrease the number of authentication procedures without negatively influencing the security of the wireless LAN by establishing an encrypted channel for each mobile node and using method 1: an aggressive key pre-distribution and method 2: probe request triggering passive key pre-query technique, thereby reducing the time of inter-AP handover for the mobile node. Furthermore, a re-authentication procedure is started to update the key after the key is used for a long time so as to ensure that the key is safe, thereby effectively achieving a fast and safe wireless LAN environment.