摘要:
A perpendicular magnetic recording medium, comprises a substrate; a soft-magnetic layer formed on the substrate; an NaCl-type oxide layer for orientation control formed on the soft-magnetic layer, having a thickness of from more than 0 to less than 10 nm; and a magnetic recording layer formed on the NaCl-type oxide layer for orientation control, comprising a maghemite thin film. Such a perpendicular magnetic recording medium is capable of showing excellent magnetic properties, a high recording resolution and improved surface properties.
摘要:
A magnetic recording medium exhibiting a high coercive force and excellent squareness having a substrate, an underlayer formed on the substrate, and a spinel-type iron oxide thin film with maghemite as a main component formed on the underlayer. The spinel-type iron oxide thin film has a thickness (t) of 5 to 50 nm, is constituted by grains having an average grain size (D) of 5 to 30 nm, standard deviation of sizes of grain of not more than 4 nm and a ratio (D/t) of the average grain size (D) to the thickness (t) of less than 1.0, exhibits a coercive force of not less than 159 kA/m (2,000 Oe) and a coercive squareness ratio S* of not less than 0.5:1 in a longitudinal recording medium or a squareness ratio not less than 0.75:1 in a perpendicular recording medium.
摘要翻译:具有高矫顽力和具有基底的优良矩形性的磁记录介质,在基底上形成的底层和在底层上形成有以磁赤铁矿为主要成分的尖晶石型氧化铁薄膜。 尖晶石型氧化铁薄膜的厚度(t)为5〜50nm,由平均粒径(D)为5〜30nm的晶粒构成,粒径不超过4nm的标准偏差 平均粒径(D)与厚度(t)的比(D / t)小于1.0时,矫顽力为159kA / m 2(2000Oe),矫顽截面比S * 在纵向记录介质中不小于0.5:1,或垂直记录介质中不小于0.75:1的矩形比。
摘要:
A magnetic recording medium comprises a polymer film substrate having an elongated shape or a polymer flexible substrate; an underlayer having a thickness of less than 10 nm, which is formed on the substrate; and a magnetic recording layer comprising a spinel iron oxide thin film containing maghemite as a main component, which is formed on the underlayer and has a coercive force of not less than 159 kA/m (2000 Oe). The present invention provides the magnetic recording medium comprising a spinel iron oxide thin film containing maghemite as a main component, which exhibits an excellent recording resolution performance while maintaining a high coercive force and a high coercive force squareness.
摘要:
A magnetic recording medium including a substrate and formed on the substrate a maghemite thin film having a surface roughness represented by a center line mean roughness Ra of 0.1 to 1.0 nm, and a coercive force squareness S* value of not less than 0.50. This magnetic recording medium exhibits excellent magnetic properties, especially, coercive force squareness S* value and a more enhanced surface smoothness.
摘要:
The present invention relates to Li—Ni composite oxide particles for a non-aqueous electrolyte secondary battery which have a large charge/discharge capacity and are excellent in thermal stability under a charged condition. The above object can be achieved by the Li—Ni composite oxide particles for a non-aqueous electrolyte secondary battery, comprising a Li—Ni composite oxide whose secondary particles form core particles thereof and have a composition represented by the formula: Lix1Ni1-y1-z1-w1Coy1Mnz1Mw1O2 (in which 0.9≦x1≦1.3; 0.1≦y1≦0.3; 0.0≦z1≦0.3; 0≦w1≦0.1; and M is at least one metal selected from the group consisting of Al and Fe), wherein a Li—Ni composite oxide having a composition represented by the formula: Lix2Ni1-y2-z2-w2Coy2Mnz2Mw2O2 (in which 0.9≦x2≦1+z2; 0≦y2≦0.33; 0≦z2≦0.5; 0≦w2≦0.1; and M is at least one metal selected from the group consisting of Al, Fe, Mg, Zr and Ti, is coated or present on a surface of the respective secondary particles.
摘要:
A magnetic recording medium, comprises a substrate; and a Co-containing spinel-type iron oxide thin film formed on the substrate, having a Co content of 1 to 20 mol % based on Fe, a coercive force value of not less than 159 kA/m (2,000 Oe), a thickness of 5 to 200 nm, a center line average height Ra of 0.1 to 0.8 nm and a maximum height (Rmax) of not more than 10 nm. The magnetic recording medium is capable of exhibiting a relatively high coercive force, especially a coercive force of not less than 159 kA/m (2,000 Oe) despite as small a film thickness as not more than 200 nm, and an excellent surface smoothness.
摘要翻译:磁记录介质,包括基板; 和在该基板上形成的含Co尖晶石型氧化铁薄膜,Co含量为Fe为1〜20摩尔%,矫顽力值为159kA / m 2(2,000Oe)以上,厚度 为5〜200nm,中心线平均高度Ra为0.1〜0.8nm,最大高度(Rmax)为10nm以下。 尽管薄膜厚度不大于200nm,磁记录介质也能表现出相当高的矫顽力,特别是不低于159kA / m(2000Oe)的矫顽力,并具有优异的表面平滑度。
摘要:
Positive electrode active substance particles including a compound having at least a crystal system belonging to a space group of R−3m and a crystal system belonging to a space group of C2/m, and boron. The compound is a composite oxide comprising at least Li, Mn, and Co and/or Ni; a relative intensity ratio [(a)/(b)] of a maximum diffraction peak intensity (a) observed at 2θ=20.8±1° in a powder X-ray diffraction pattern of the positive electrode active substance as measured using a Cu-Ku ray to a maximum diffraction peak intensity (b) observed at 2θ=18.6±1° in the powder X-ray diffraction pattern, is 0.02 to 0.5; a content of Mn in the positive electrode active substance particles such that a molar ratio of Mn/(Ni+Co+Mn) is not less than 0.55; and the positive electrode active substance particles include boron in an amount of 0.001 to 3% by weight.
摘要:
Li—Ni composite oxide particles for a non-aqueous electrolyte secondary battery with a large charge/discharge capacity and excellent thermal stability in a charged condition. The Li—Ni composite oxide secondary particles form core particles having a composition Lix1Ni1-y1-z1-w1Coy1Mnz1Mw1O2 in which 0.9≦x1≦1.3; 0.1≦y1≦0.3; 0.0≦z1≦0.3; 0≦w1≦0.1; and M is Al or Fe. The Li—Ni composite oxide has a composition Lix2Ni1-y2-z2-w2Coy2Mnz2Mw2O2 in which 0.9≦x2≦1+z2; 0≦y2≦0.33; 0≦z2≦0.5; 0≦w2≦0.1; and M is Al, Fe, Mg, Zr or Ti and is coated or present on a surface of the secondary particles.
摘要:
The present invention relates to Li—Ni-based composite oxide particles comprising Mn, and Co and/or Al, wherein Co and Al are uniformly dispersed within the particles, and Mn is present with a gradient of its concentration in a radial direction of the respective particles such that a concentration of Mn on a surface of the respective particles is higher than that at a central portion thereof. The Li—Ni-based composite oxide particles can be produced by allowing an oxide and a hydroxide comprising Mn to mechanically adhere to Li—Ni-based oxide comprising Co and/or Al; and then heat-treating the obtained material at a temperature of not lower than 400° C. and not higher than 1,000° C. The Li—Ni-based composite oxide particles of the present invention are improved in thermal stability and alkalinity.
摘要:
The present invention relates to positive electrode active substance particles comprising a compound having at least a crystal system belonging to a space group of R−3m and a crystal system belonging to a space group of C2/m, and boron, wherein the compound is a composite oxide comprising at least Li, Mn, and Co and/or Ni; a relative intensity ratio [(a)/(b)] of a maximum diffraction peak intensity (a) observed at 2θ=20.8±1° in a powder X-ray diffraction pattern of the positive electrode active substance as measured using a Cu-Ka ray to a maximum diffraction peak intensity (b) observed at 2θ=18.6±1° in the powder X-ray diffraction pattern, is 0.02 to 0.5; a content of Mn in the positive electrode active substance particles is controlled such that a molar ratio of Mn/(Ni+Co+Mn) therein is not less than 0.55; and the positive electrode active substance particles comprise the boron in an amount of 0.001 to 3% by weight. The positive electrode active substance particles of the present invention are produced by calcining a mixture comprising precursor particles comprising Mn, and Ni and/or Co, a lithium compound and a boron compound at a temperature of 500 to 1500° C. The positive electrode active substance particles of the present invention can provide a secondary battery which can be improved in charge/discharge capacity and cycle characteristics.