摘要:
A charge pump comprises a limit swing generator that receives an input signal and that generates a drive signal based on the input signal. A charge pump core includes output switches that generate a charge pump output in response to the drive signal. The drive signal includes a voltage level. The limit swing generator includes at least one voltage generator to control the voltage level of the drive signal such that the drive signal tracks a parametric variable of the output switches.
摘要:
A charge pump comprising a charge pump core including output switches. The charge pump core, in response to a drive signal, to generate a charge pump output. A limit swing generator, in response to an input signal, to generate the drive signal to control the charge pump core. The drive signal having voltage levels including a high level and a low level. The limit swing generator including at least one voltage generator to control the voltage levels of the drive signal such that the drive signal tracks a process variable of the output switches. The at least one voltage generator including at least one diode or diode connected device.
摘要:
A charge pump comprising a charge pump core including output switches. The charge pump core, in response to a drive signal, to generate a charge pump output. A limit swing generator, in response to an input signal, to generate the drive signal to control the charge pump core. The drive signal having voltage levels including a high level and a low level. The limit swing generator including at least one voltage generator to control the voltage levels of the drive signal such that the drive signal tracks a process variable of the output switches.
摘要:
A charge pump comprising a charge pump core including output switches. The charge pump core, in response to a drive signal, to generate a charge pump output. A limit swing generator, in response to an input signal, to generate the drive signal to control the charge pump core. The drive signal having voltage levels including a high level and a low level. The limit swing generator including at least one voltage generator to control the voltage levels of the drive signal such that the drive signal tracks a process variable of the output switches. The at least one voltage generator including at least one diode or diode connected device.
摘要:
Disclosed is an inverter cell design comprising first and second transistors and first and second resistors. In disclosed embodiments, the first resistor is connected to a source of the first transistor and the second resistor is connected to a source of the second transistor. The first and second resistors are configured for connection to respective first and second voltage potentials. The inverter cells may be configured in a ring oscillator. A crystal oscillator may comprise an inverter cell according to the present disclosure.
摘要:
A method for manufacturing a reconstituted stone raw material by using a molten slag includes: controlling a temperature of the molten slag at 1400° C.-1500° C., and performing a cast-molding process on the molten slag; and maintaining the cast-molded slag at a temperature of 800° C.-1000° C. for 1-5 hours in a non-reducing atmosphere, and then gradually cooling the cast-molded slag to a room temperature within 2-5 hours to obtain the reconstituted stone raw material. An energy-saving and efficient method for comprehensively utilizing the blast furnace slag is provided. The produced reconstituted stone raw material has such characteristics as stable color quality, abrasion resistance, pressure resistance, strong adhesiveness, low coefficient of expansion and low shrinkage ratio.
摘要:
Disclosed is an inverter cell design comprising first and second transistors and first and second resistors. In disclosed embodiments, the first resistor is connected to a source of the first transistor and the second resistor is connected to a source of the second transistor. The first and second resistors are configured for connection to respective first and second voltage potentials. The inverter cells may be configured in a ring oscillator. A crystal oscillator may comprise an inverter cell according to the present disclosure.
摘要:
A method for manufacturing a foam material by using a molten slag includes: introducing the molten slag maintained at 1400° C.-1500° C. into a pool for preserving heat, and adding a viscosity modifier and/or a color modifier to the molten slag to adjust a viscosity and/or a color a product manufactured. The molten slag is discharged into a foaming pour while adding a foaming agent to the molten slag, while controlling the foam and mold at 1250° C.-1400° C. The foamed and molded slag is maintained at 800° C.-1000° C. for 20-30 minutes in a non-reducing atmosphere, and then naturally cooled to a room temperature to obtain the foam material. The produced inorganic nonmetal foam material and products thereof have such characteristics as stable color quality, abrasion resistance, pressure resistance, small thermal conductivity, small shrinkage ratio, and excellent sound absorption, adsorption and filtering performances.
摘要:
A method for manufacturing a plate inorganic nonmetal material by using a molten slag by introducing the molten slag into a pool for preserving heat and modifying, wherein a temperature of the molten slag is 1450° C.-1600° C., and modifying a viscosity and/or a color of the molten slag according to requirements of the product manufactured. The modified molten slag is introduced into a float process furnace using tin or tin alloy carrier forming a plate of inorganic nonmetal material which is discharged at 1000-1300° C. The plate is maintained at 600° C.-900° C. for 0.5-2 hours in a non-reducing atmosphere, and then cooled to a room temperature within 1-2 hours. An energy-saving and efficient method for comprehensively utilizing the blast furnace slag is provided. The produced plate inorganic nonmetal material has such characteristics as stable color quality, abrasion resistance, pressure resistance, strong adhesiveness, low coefficient of expansion and low shrinkage ratio.
摘要:
A method for manufacturing a plate inorganic nonmetal material by using a molten slag by introducing the molten slag into a pool for preserving heat and modifying, wherein a temperature of the molten slag is 1450° C.-1600° C., and modifying a viscosity and/or a color of the molten slag according to requirements of the product manufactured. The modified molten slag is introduced into a float process furnace using tin or tin alloy carrier forming a plate of inorganic nonmetal material which is discharged at 1000-1300° C. The plate is maintained at 600° C.-900° C. for 0.5-2 hours in a non-reducing atmosphere, and then cooled to a room temperature within 1-2 hours. An energy-saving and efficient method for comprehensively utilizing the blast furnace slag is provided. The produced plate inorganic nonmetal material has such characteristics as stable color quality, abrasion resistance, pressure resistance, strong adhesiveness, low coefficient of expansion and low shrinkage ratio.