摘要:
The present invention relates to a method for obtaining calcium aluminates for metallurgical use from non-saline aluminum slags by means of reactive grinding and thermal treatment.
摘要:
Disclosed is a slag comprising, on a dry basis and expressed as the total of the metal present as elemental metal and the presence of the metal in an oxidized state, a) at least 7% wt and at most 49% wt of Fe, b) at most 1.3% wt of Cu, c) at least 24% wt and at most 44% wt of SiO2, and d) at least 2.0% wt and at most 20% wt of CaO, characterised in that the slag comprises, on the same basis, e) at least 0.10% wt and at most 1.00% wt of Zn, f) at least 0.10% wt and at most 2.5% wt of MgO, and g) at most 0.100% wt of Pb. Further disclosed are an improved object comprising the slag, a process for the production of the slag, and a number of uses of the slag, whereby the slag may comprise up to at most 1.50% wt of zinc and down to 1.0% wt of CaO.
摘要:
A method for recovering metal values from a molten slag composition includes atomizing the slag with an oxygen-containing gas in a gas atomization apparatus, to produce solid slag granules. Oxygen in the atomizing gas converts metals to magnetic metal compounds, thereby magnetizing the metal-containing slag granules. These metal-containing slag granules are then magnetically separated. Larger amounts of metals may be removed by passing the molten slag through a pre-settling pan with an adjustable base, and/or discontinuing atomization where the metal content of the slag exceeds a predetermined amount. Solid slag granules produced by atomization may be charged to a recovery unit for recovery of one or more metal by-products. An apparatus for recovering metal values from molten slag includes a gas atomization apparatus, a flow control device for controlling the flow of atomizing gas, a control system, and one or more sensors to detect metal values in the slag.
摘要:
The present invention relates to a process and to a system for eliminating the expandability of steel-plant slag, which comprises a primary crusher (3) to reduce the fragments according to their granulometry; a magnetic separator (4) to remove metallic fragments bigger than a determined granulometry (5); a rotary dryer (6) to dry slag free from bigger metallic fragments; an impact mill (11) to disaggregate and fragment slag particles that are bigger than a predetermined granulometry; a classifier (12) for aero-classification and drag of fine and superfine particles; a cooler (17) for cooling slag particles bigger than a predetermined granulometry by means of heat exchange and removal of the fine and superfine particles that were not collected by the impact mill (11); a vibrating sieve (21) provided with two or more decks (23, 24, and 25) with screens of predetermined sizes; low-intensity magnetic separators (26, 27 and 28), with generation of non-magnetic slag fractions free from metallic iron and from iron monoxide, and of magnetic fractions composed by metallic iron and iron monoxide; and low-intensity magnetic separators (35, 36 and 37) to reprocess the magnetic fractions with generation of concentrate with high metallic iron contents and a product with high concentration of iron monoxide.
摘要:
A process for preparing solid slag granules from a molten slag composition comprises: (a) providing the molten slag composition; (b) converting the molten slag composition into the solid slag granules in a dispersion apparatus; and (c) sorting the solid slag granules by shape in a separator to produce a plurality of fractions having different sphericities. Granular slag products comprise one or more fractions of solid slag granules produced by the process, and include proppants, roofing granules, catalyst supports, which may be porous or non-porous, and coated or uncoated.
摘要:
A method for processing slags containing iron and non-ferrous metals, to produce clean slag free of detrimental substances and non-ferrous metals and suitable for use as a raw material or construction material. Slag is reduced in a reduction furnace with the help of reducing agents so that at least 5% of the iron of the slag is reduced into metal. Some of the non-ferrous metals, such as zinc, lead, arsenic and cadmium, vaporize. The contents of the reduction furnace are continuously mixed to prevent separation of a metallic phase from the slag. The generated slag-metal mixture is tapped off from the reduction furnace, cooled, crushed and ground to a finer size. Finally, a metal fraction is separated from a clean slag.
摘要:
A granulator comprising a rotary atomizer for receiving molten material and projecting droplets of the molten material there from; and an impact surface disposed within the trajectory of the droplets and upon which the droplets impact, the impact surface being at a distance from the rotary atomizer and at an angle such that (i) all or substantially all of the droplets impact the impact surface, and (ii) a substantial portion of the droplets are not fully solidified prior to contact with the impact surface.
摘要:
Method and plant for the stabilization and inertization of slag which is intended to obtain an inert and matured product based on slag deriving from steel production processes in steelworks or ferrous mineral treatment processes in blast furnaces.
摘要:
The invention concerns a titanium-containing aggregate obtainable by mixing and/or treating residues from the manufacture of titanium dioxide which are obtained during the manufacture of titanium dioxide using the sulphate and/or chloride process with basic slags from the manufacture of metals, a method for its manufacture and its use in metallurgical processes, as well as its use as an aggregate and/or filler for concrete, cement, asphalt, refractory materials, repair compounds and sizes.
摘要:
Disclosed herein is a method of reducing slag, including the steps of: examining the components of slag to be reduced, and setting a target composition ratio after reduction; determining the mixing ratio and input amount of a complex reducing agent of a plurality of reducing agents in accordance with the set target composition ratio to determine the complex reducing agent; and supplying the complex reducing agent into molten slag to reduce the slag. The method is advantageous in that the reduction efficiency of slag can be maximized, various kinds of reducing agents can be efficiently used, and the recovery amount of valuable metals can be increased, thus reducing cost.