摘要:
Disclosed is an optical module comprising, an optical waveguide on the upper side of a substrate; a cutout with at least two slant surfaces, passing at least the core of the optical waveguide; and a film-filter above the cutout. Constructions of bi-directional multi-wavelength optical transmitter-receiver assembly using the optical module as a unit element are also provided in variety on a planar substrate. According to this invention, a bi-directional multi-wavelength transmitter-receiver, which is compact, reliable, excellent in the optical performance and simple in the alignments between the composing elements, can be produced.
摘要:
Disclosed is an optical module comprising, an optical waveguide on the upper side of a substrate; a cutout with at least two slant surfaces, passing at least the core of the optical waveguide; and a film-filter above the cutout. Constructions of bi-directional multi-wavelength optical transmitter-receiver assembly using the optical module as a unit element are also provided in variety on a planar substrate. According to this invention, a bi-directional multi-wavelength transmitter-receiver, which is compact, reliable, excellent in the optical performance and simple in the alignments between the composing elements, can be produced.
摘要:
Provided are a lightwave circuit and a method of manufacturing the same. The lightwave circuit includes a first substrate having an engraved core formation groove which is formed on an upper portion of the first substrate, a core layer which is formed inside the engraved core formation groove, a BPSG bonding layer which is formed on the first substrate including the core layer, and a second substrate which is formed on the BPSG bonding layer. Accordingly, light loss and branching uniformity of the lightwave circuit are effectively improved, and the lightwave circuit is manufactured simply and inexpensively while also further improving light loss and branching uniformity of the lightwave circuit.
摘要:
A method of fabricating a thermooptic tunable wavelength filter of optical communication systems using WDM is provided, which includes the steps of forming a polymer optical waveguide on a semiconductor substrate using a polymer material, forming a polymer Bragg grating on the optical waveguide using O2 RIE and polymer spin coating, and forming a thermooptic tuning electrode over the polymer optical waveguide in which the Bragg grating is integrated. This provides the thermooptical tunable wavelength filter which has very narrow wavelength band width of transmission signal, low crosstalk with optical signals adjacent thereto, stable wavelength tuning characteristic using thermooptic effect and wide tuning ranges. Furthermore, the optical devices using the polymer optical waveguide can be fabricated with low cost. Thus, they have advantages in terms of economy and marketability.
摘要:
A novel planar waveguide structure has been constructed by sintering substantially pure SiO.sub.2 layers in a He.sub.2 /BCl.sub.3 atmosphere. This results in the generation of a liquid phase of substantially lower viscosity than that of the deposited silica by itself. Since viscous sintering is enhanced by the presence of this liquid, consolidation occurs at lower temperature, e.g. 1000.degree.-1100.degree. C., than those used in the prior art, e.g. 1350.degree.-1500.degree. C. Much of the B.sub.2 O.sub.3 remains unreacted with the silica particles it helps to sinter, acting like a flux to bring about consolidation. This remaining B.sub.2 O.sub.3 is removed at the conclusion of the consolidation procedure by steam treatment at temperatures of 900.degree.-1100.degree. C. Some boron is incorporated into the silica layer, changing its CTE without substantially increasing its index. Thus, this method improves both structure and processing of planar waveguides by reducing the processing temperature and producing a glass which does not bow the substrate and essentially eliminates birefringence resulting in polarization dependent losses. This greatly benefits sophisticated circuits such as those intended for wavelength diversion multiplexing and allows narrow and precisely positional pass bands.
摘要:
Disclosed is a fluorine compound having perfluorostyrene introduced at a terminal thereof, as represented in the following Formula 1, and a coating solution and an optical waveguide device using the same, characterized in that the introduction of perfluorostyrene results in a facile fabrication of thin films by a UV curing or a thermal curing, high thermal stability and chemical resistance, and low optical propagation loss and birefringence: Wherein Z is O or S; RF is an aliphatic or aromatic group; y is a natural number of 1–10; y′ is an integer of 0–1; x is an integer of 0–200; and Wherein B is a single bond or selected from the group consisting of —CO—, —SO2—, —S— and —O—, and Hal is selected from the group consisting of F, Cl, Br and I.
摘要:
An optical switch having reduced processing errors in a coupling region, according to the claimed invention includes an input portion having a pair of optical waveguides; an output portion having a pair of optical waveguides; a light phase shifting portion for inducing an additional phase change on light travelling in the input portion; a first light coupling waveguide for coupling between two light signals of the input portion and for providing a coupled signal with the light phase shifting portion; and a second light coupling waveguide for coupled between two light signals of the light phase shifting means and for providing a coupled signal with the output portion. The light coupling unit includes a waveguide. The switch reduces considerably any error that stems from manufacturing variations between waveguides in a coupling region since the waveguides share the error produced in a coupling region. The length of the switching element can be reduced since the coupled between waveguides is not indirect as in DC switches and BB switches. Due to the reduction in length, the output loss is reduced considerable.
摘要:
Provided are a lightwave circuit and a method of manufacturing the same. The lightwave circuit includes a first substrate having an engraved core formation groove which is formed on an upper portion of the first substrate, a core layer which is formed inside the engraved core formation groove, a BPSG bonding layer which is formed on the first substrate including the core layer, and a second substrate which is formed on the BPSG bonding layer. Accordingly, light loss and branching uniformity of the lightwave circuit are effectively improved, and the lightwave circuit is manufactured simply and inexpensively while also further improving light loss and branching uniformity of the lightwave circuit.