Abstract:
An electro-optic modulator is formed from all flexible materials, to form a flexible electro-optic modulator. The formation process uses a photoresist which selectively adheres to one material more than it adheres to another material. This allows selective liftoff, where only parts of the substrate are lifted off. For example, this allows silicon ends on the modulator, thereby facilitating pig tailing and also facilitates handling. Another aspect describes testing the bending radius.
Abstract:
A tapered electrooptic (EO) polymer waveguide interconnection structure coupling an EO polymer waveguide and a passive polymer waveguide and a method of fabricating the same.
Abstract:
A spatial switch of a simple structure using a "M.times.N" optical beam steering device which operates with M "1.times.N" spatial switches using a phased optical waveguide array. The spatial switch using an optical beam steering device in accordance with the present invention is characterized in that the optical beam steering device includes an optical waveguide phase modulator array, the optical beam steering device is used as a "1.times.N" spatial switch device, and M units of the "1.times.N" spatial switch device are aligned in parallel so that a "M.times.N" spatial switching operation is performed on a plane where a far field diffraction pattern of the "1.times.N" spatial switch device is formed. The spatial switch utilizes the characteristics that if the propagation directions of the lights output from "1.times.N" switches coincide with each other, the far field diffraction patterns formed by the switches converge into the same point.
Abstract:
The present disclosure relates to a gas sensor including a nanopore electrode and a fluorine compound coated on the nanopore electrode, and also relates to a preparing method of the gas sensor.
Abstract:
An electro-optic modulator is formed from all flexible materials, to form a flexible electro-optic modulator. The formation process uses a photoresist which selectively adheres to one material more than it adheres to another material. This allows selective liftoff, where only parts of the substrate are lifted off. For example, this allows silicon ends on the modulator, thereby facilitating pig tailing and also facilitates handling. Another aspect describes testing the bending radius.
Abstract:
An electro-optical modulator and a method for biasing a Mach-Zehnder modulator. The inventive modulator includes a layer of material at least partially transparent to electromagnetic energy. A first conductive layer is disposed on a first surface of the layer of at least partially transparent material. A second conductive layer is disposed on a second surface of the layer of at least partially transparent material. A layer of insulating material is disposed on the second conductive layer and a third conductive layer is disposed on the layer of insulating material. In the illustrative application, the modulator is a Mach-Zehnder modulator. A biasing potential is applied to the second conductive layer of the modulator and a modulating voltage is applied across the first and the third conductive layers.
Abstract:
Method for manufacturing an electro-optic polymer waveguide device including the step of electrode poling an electro-optic polymer material of the device in an oxygen-free environment. In a preferred embodiment, the electrode poling is performed at a temperature close to a glass transition temperature of the electro-optic polymer material.
Abstract:
An optical waveguide polarizer having a transverse electric wave pass mode. The waveguide polarizer includes an upper cladding layer, a core layer, and a lower cladding layer arranged in a vertically stacked relationship. The core layer includes an electro-optic polymer. The waveguide polarizer has a plurality of electrodes disposed on the upper and lower cladding layers and along both sides of a longitudinal region in the core layer such that the plurality of electrodes form electric fields in a direction substantially perpendicular to the core layer and along both sides of the longitudinal region so that a transverse electric wave mode is guided through the longitudinal region and a transverse magnetic wave mode is substantially extinguished in the longitudinal region.
Abstract:
Provided is an integrated optical current sensor for measuring the magnitude of current. The integrated optical current sensor is fabricated by integrating optical elements, such as a thermo-optic phase modulator, a waveguide polarizer and an optical coupler, on a single substrate. As compared to the known current sensors using optical fibers, the integrated optical current sensor is more compact and enables measurement of current with higher reliability. Provided also is a method for producing current sensor chips in a large scale by using a process for fabricating integrated optical elements.
Abstract:
A method of fabricating a thermooptic tunable wavelength filter of optical communication systems using WDM is provided, which includes the steps of forming a polymer optical waveguide on a semiconductor substrate using a polymer material, forming a polymer Bragg grating on the optical waveguide using O2 RIE and polymer spin coating, and forming a thermooptic tuning electrode over the polymer optical waveguide in which the Bragg grating is integrated. This provides the thermooptical tunable wavelength filter which has very narrow wavelength band width of transmission signal, low crosstalk with optical signals adjacent thereto, stable wavelength tuning characteristic using thermooptic effect and wide tuning ranges. Furthermore, the optical devices using the polymer optical waveguide can be fabricated with low cost. Thus, they have advantages in terms of economy and marketability.