摘要:
Superhydrophobic films (200, 400) are disclosed. More particularly, durable superhydrophobic films (200, 400) having discrete flat faces (206, 406) spaced apart by valleys (208, 408) where the valleys and faces are covered by nanostructures or nanoparticles (424) are disclosed. Various methods of making such films are also disclosed.
摘要:
Lightguide is disclosed. The lightguide includes a light guiding layer for propagating light by total internal reflection, and an optical film that is disposed on the light guiding layer. The optical film includes a plurality of voids, an optical haze that is not less than about 30%, and a porosity that is not less than about 20%. Substantial portions of each two neighboring major surfaces in the lightguide are in physical contact with each other.
摘要:
A lightguide (3690) is disclosed. The lightguide includes a light guiding layer (3610) for propagating light by total internal reflection, and an optical film (3640) that is disposed on the light guiding layer. The optical film includes a plurality of voids, an optical haze that is not less than about 30%, and a porosity that is not less than about 20%. Substantial portions of each two neighboring major surfaces (3614, 3642) in the lightguide are in physical contact with each other. The lightguide can be used as blacklight in a display system.
摘要:
A backlight system includes an extended area light guide (120) and crossed first (128) and second (130) prismatic recycling films. The light guide provides a first light distribution that has a maximum luminance at a first polar angle, e.g., from 70 to 90 degrees, relative to the optical axis (116) of the system. The recycling films provide a second light distribution. No diffuser film is provided between the light guide and the recycling film disposed nearest the light guide. Instead, light is specularly transmitted from the output surface (120a) of the light guide to the input surface (128a) of the recycling film nearest the light guide. The recycling films comprise prisms having refractive indices tailored to provide the second light distribution with a maximum luminance at a polar angle of 10 degrees or less. The prisms preferably have a refractive index from 1.63 to 1.76. Related methods and articles are also disclosed.
摘要:
A backlight system includes an extended area light guide (120) and crossed first (128) and second (130) prismatic recycling films. The light guide provides a first light distribution that has a maximum luminance at a first polar angle, e.g., from 70 to 90 degrees, relative to the optical axis (116) of the system. The recycling films provide a second light distribution. No diffuser film is provided between the light guide and the recycling film disposed nearest the light guide. Instead, light is specularly transmitted from the output surface (120a) of the light guide to the input surface (128a) of the recycling film nearest the light guide. The recycling films comprise prisms having refractive indices tailored to provide the second light distribution with a maximum luminance at a polar angle of 10 degrees or less. The prisms preferably have a refractive index from 1.63 to 1.76. Related methods and articles are also disclosed.
摘要:
Lightguides are disclosed. More particularly, lightguides that include a lightguiding layer and a light extracting layer having a structured surface are disclosed. The light guiding layer is optically coupled to a first set of structures of the structured surface at given locations, and is not optically coupled to a second set of structures at given locations, thereby producing total internal reflection at the second locations. The selective optical coupling may be achieved by a number of different contemplated means as discussed herein. The lightguides allow for distribution of light along with redirection towards an image viewer without a number of commonly required optical elements in backlights.
摘要:
Lightguides are disclosed. More particularly, lightguides that include a lightguiding layer and a light extracting layer having a structured surface are disclosed. The light guiding layer is optically coupled to a first set of structures of the structured surface at given locations, and is not optically coupled to a second set of structures at given locations, thereby producing total internal reflection at the second locations. The selective optical coupling may be achieved by a number of different contemplated means as discussed herein. The lightguides allow for distribution of light along with redirection towards an image viewer without a number of commonly required optical elements in backlights.
摘要:
A liquid crystal device comprises of a pair of opposed substrates defining a cell gap. Each substrate has an electrode disposed on a surface facing the other substrate. A plurality of spacers are randomly disposed in the cell gap and extend from one substrate to the other substrate, wherein a polymerization enhancing or initiating compound is not disposed on the surface of the spacers. Polymer columns are randomly disposed between the opposed substrates, extending from one substrate to the other, at least a portion of which are disposed around and immobilize the spacers in the cell gap. A liquid crystal material is disposed in the cell gap. A method for making a liquid crystal device is also provided. The internal columnar structures provide stability against mechanical pressure enabling the fabrication of durable, flexible LC display devices using plastic substrates for applications in portable and handheld devices.
摘要:
An apparatus (10, 10″) for producing an alignment surface on an associated substrate (12, 12″) of a liquid crystal display. An electron source (40) produces a collimated electron beam (50). A substrate support (20, 20″) supports the associated substrate (12, 12″) with a surface normal (80) of the substrate arranged at a preselected angle (α) relative to the collimated electron beam (50). The collimated electron beam (50) is rastered across the associated substrate (12, 12″) at the preselected angle (α) while the substrate moves through the electron beam.