摘要:
A method for preparing amino linker oligonucleotides is provided. More specifically, a method of preparing 5′-amino-linker oligonucleotides comprising the steps of: introducing an amino linker having a protecting group into the 5′ terminus of an oligonucleotide; and removing the protecting group from the amino linker oligonucleotide by contacting with acetic acid and 2,2,2-trifluoroethanol is provided. The amino protecting group is efficiently removed from the amino linker oligonucleotides, and thereby achieving a high yield of the amino linker oligonucleotides.
摘要:
Improved G-rich oligonucleotide (GRO) aptamers specific to nucleolin, a method of preparing the aptamers, and a use of the aptamers for diagnosing and/or treating a nucleolin-associated disease, are provided.
摘要:
A method for preparing amino linker oligonucleotides is provided, wherein an amino protecting group is efficiently removed from the amino linker oligonucleotides protected by the protecting group, and thereby achieving a high yield of the amino linker oligonucleotides.
摘要:
A semiconductor memory device includes a clock enable signal self refresh buffer for generating a self refresh clock enable signal by receiving the clock enable signal in the self refresh mode, an internal clock signal generating unit for generating an internal clock signal by receiving the external clock signal, a signal synchronization unit for generating an internal clock enable signal by synchronizing the clock enable signal with the internal clock signal, a level detection unit for generating a level detection signal by detecting levels of the internal clock enable signal and the self refresh clock enable signal, a clock self refresh buffer for receiving the external clock signal during a self refresh mode in response to the level detection signal, and a self refresh command generation unit for activating a self refresh command in response to the level detection signal and inactivating the self refresh command in response to the level detection signal and an output signal of the clock self refresh buffer.
摘要:
The on-chip data transmission controller comprises a data comparison unit for comparing current data with previous data and issuing an inversion flag if the number of data bits phase-transited is larger than a preset number, a first data inversion unit for inverting a phase of the current data when the inversion flag is activated and providing inverted data onto a data bus, and a second data inversion unit for inverting a phase of the data transmitted via the data bus when the inversion flag is activated and outputting inverted data. Through this controller, an on-chip noise that largely occurs as the number of data to be transmitted increases can be reduced, by decreasing transition number of data inputted via the GIO line, in case of using a multi step pre-patch structure to improve an operation speed of a memory device.
摘要:
A semiconductor memory device includes a clock enable signal self refresh buffer for generating a self refresh clock enable signal by receiving the clock enable signal in the self refresh mode, an internal clock signal generating unit for generating an internal clock signal by receiving the external clock signal, a signal synchronization unit for generating an internal clock enable signal by synchronizing the clock enable signal with the internal clock signal, a level detection unit for generating a level detection signal by detecting levels of the internal clock enable signal and the self refresh clock enable signal, a clock self refresh buffer for receiving the external clock signal during a self refresh mode in response to the level detection signal, and a self refresh command generation unit for activating a self refresh command in response to the level detection signal and inactivating the self refresh command in response to the level detection signal and an output signal of the clock self refresh buffer.
摘要:
The on-chip data transmission controller comprises a data comparison unit for comparing current data with previous data and issuing an inversion flag if the number of data bits phase-transited is larger than a preset number, a first data inversion unit for inverting a phase of the current data when the inversion flag is activated and providing inverted data onto a data bus, and a second data inversion unit for inverting a phase of the data transmitted via the data bus when the inversion flag is activated and outputting inverted data. Through this controller, an on-chip noise that largely occurs as the number of data to be transmitted increases can be reduced, by decreasing transition number of data inputted via the GIO line, in case of using a multi step pre-patch structure to improve an operation speed of a memory device.