摘要:
A method of reducing a code size of a program by controlling a control flow of the program using software in a computer system is disclosed. The method includes the steps of storing a first program count of a first instruction in a first buffer when an error occurs while the first instruction having an Operand including Offset and Length is being executed among a plurality of instructions loaded in the code memory, changing a current program count of the code memory to a second program count which is obtained by adding the Offset to the first program count, storing a second instruction, which is located at a position shifted from the second program count by a value of the Length, in a second buffer, replacing the second instruction with a third instruction, which is not recognized by a microprocessor, replacing the third instruction with the second instruction stored in the second buffer when an error occurs while the third instruction is being executed, and changing the current program count of the code memory to a predetermined program count next to the first program count stored in the first buffer.
摘要:
A method, medium and apparatus for storing and restoring a register context for a fast context switching between tasks is disclosed. The method, medium and apparatus may improve overall operating speed of a system by increasing the speed of context switching. The method may include adding an update code for updating information of live registers to a task file that includes a code of a task to perform a specified function, converting the task file having the update code added thereto into a run file, updating the information of the live registers with the update code during running of the task using the run file, and storing a live register context according to the updated information of the registers.
摘要:
A method, medium and apparatus for storing and restoring a register context for a fast context switching between tasks is disclosed. The method, medium and apparatus may improve overall operating speed of a system by increasing the speed of context switching. The method may include adding an update code for updating information of live registers to a task file that includes a code of a task to perform a specified function, converting the task file having the update code added thereto into a run file, updating the information of the live registers with the update code during running of the task using the run file, and storing a live register context according to the updated information of the registers.
摘要:
A method of reducing a code size of a program by controlling a control flow of the program using software in a computer system is disclosed. The method includes the steps of storing a first program count of a first instruction in a first buffer when an error occurs while the first instruction having an Operand including Offset and Length is being executed among a plurality of instructions loaded in the code memory, changing a current program count of the code memory to a second program count which is obtained by adding the Offset to the first program count, storing a second instruction, which is located at a position shifted from the second program count by a value of the Length, in a second buffer, replacing the second instruction with a third instruction, which is not recognized by a microprocessor, replacing the third instruction with the second instruction stored in the second buffer when an error occurs while the third instruction is being executed, and changing the current program count of the code memory to a predetermined program count next to the first program count stored in the first buffer.
摘要:
A kernel-aware debugging system, medium, and method. The kernel-aware debugging system may include a kernel-aware debugging interface including a conditional breakpoint setting unit which sets a kernel-aware conditional breakpoint by checking a currently operating object inside a kernel of a target system when a central processing unit (CPU) of the target system stops operating at a particular position where the breakpoint is set and making the CPU proceed to operate when it is determined that it is not intended that the currently operating object be debugged. Moreover, the kernel-aware debugging interface may include a unit which stores control flow information for detecting faults due to asynchronous events, a profiling unit which collects profile information and allows back-tracing when faults occur, and a unit which debugs a synchronization problem between multitasks.
摘要:
A kernel-aware debugging system, medium, and method. The kernel-aware debugging system may include a kernel-aware debugging interface including a conditional breakpoint setting unit which sets a kernel-aware conditional breakpoint by checking a currently operating object inside a kernel of a target system when a central processing unit (CPU) of the target system stops operating at a particular position where the breakpoint is set and making the CPU proceed to operate when it is determined that it is not intended that the currently operating object be debugged. Moreover, the kernel-aware debugging interface may include a unit which stores control flow information for detecting faults due to asynchronous events, a profiling unit which collects profile information and allows back-tracing when faults occur, and a unit which debugs a synchronization problem between multitasks.
摘要:
Provided are a multitasking method and apparatus. By continuously maintaining the intrinsic information of each peripheral processing unit of when a process-centered task is stopped, when a reconfigurable array stops executing the process-centered task and executes a different process-centered task, by stopping executing a control-centered task and executing a reconfiguration task, only when the reconfigurable array receives an execution request of the reconfiguration task while the reconfigurable array is performing the control-centered task, or by causing a predetermined number of processing units to execute each of a plurality of reconfiguration tasks that are to be simultaneously executed by the reconfigurable array, wherein the predetermined number of processing units is set in consideration of an expected data processing amount required for the reconfiguration task, the reconfigurable array can more quickly complete execution of multitasking.
摘要:
Provided are a multitasking method and apparatus. By continuously maintaining the intrinsic information of each peripheral processing unit of when a process-centered task is stopped, when a reconfigurable array stops executing the process-centered task and executes a different process-centered task, by stopping executing a control-centered task and executing a reconfiguration task, only when the reconfigurable array receives an execution request of the reconfiguration task while the reconfigurable array is performing the control-centered task, or by causing a predetermined number of processing units to execute each of a plurality of reconfiguration tasks that are to be simultaneously executed by the reconfigurable array, wherein the predetermined number of processing units is set in consideration of an expected data processing amount required for the reconfiguration task, the reconfigurable array can more quickly complete execution of multitasking.
摘要:
A method and apparatus transmitting and receiving in a real-time system are disclosed. The method of transmitting in a real-time system includes scheduling a task included in a socket based on a predetermined transmission option designated to the socket, and transmitting a packet generated by the scheduled task based on the predetermined transmission option, so that real-time communications of a network communication can be secured and resources of the system can be efficiently used, thereby, transmitting and receiving data according to the required characteristics of transmission and reception.
摘要:
A method and apparatus for managing a memory are provided. It is possible to rapidly recover the area allocated or desired to be returned by easily recognizing a range of the area allocated or desired to be returned over the entire area of the memory by recognizing an original area of a predetermined memory chunk interrupted by a neighboring memory chunk among a series of memory chunks that make up the memory by considering an original area of the neighboring memory chunk and by recovering the predetermined memory chunk and the recognized area to their original areas, when the area allocated to or returned by an application program is interrupted.