Abstract:
Data traffic loss in a an Ethernet Ring that is multihomed, in an active-standby manner, to a VPLS transport network (such as a Border Gateway Protocol (BGP) multihomed Ethernet Ring, an MC-LAG multihomed Ethernet Ring, or some other type of active-standby multihomed Ethernet Ring, etc.) (ring) is avoided. The exemplary multihomed ring running Ethernet Ring Protection (ERP) protocol includes a Ring Protection Link (RPL), a first node and a second node linked with a designated border router and a standby border router of the network, respectively. The data traffic loss in the multihomed ring is avoided by (i) receiving an indication that the link between the first node and the designated border router has failed; and (ii) invoking, responsive to the received indication, an ERP Media Access Control (MAC)-flush in the ring, even in the absence of a failed link in the ring and without activating the specified RPL. The ERP MAC-flush causes subsequent data packets from each of the plurality of nodes in the ring to be forwarded to the standby border router via the second node.
Abstract:
In one example, a method includes configuring a first provider edge (PE) router of a Provider Backbone Bridging (PBB) Ethernet Virtual Private Network (EVPN) to join an Ethernet Segment in active-active mode with at least a second PE router that is operating as a designated forwarder for the Ethernet Segment; receiving, by the first PE router from a remote PE router and prior to the first PE router performing Media Access Control (MAC) learning of a customer-MAC (C-MAC) address that is reachable via a backbone-MAC (B-MAC) address associated with the Ethernet Segment, a network packet that includes the C-MAC address; and in response to determining that the C-MAC address has not been learned by the first PE router and the B-MAC address included in the network packet is associated with the Ethernet Segment, forwarding, by the first PE router, the network packet to a destination identified by the C-MAC address.
Abstract:
Data traffic loss in a an Ethernet Ring that is multihomed, in an active-standby manner, to a VPLS transport network (such as a Border Gateway Protocol (BGP) multihomed Ethernet Ring, an MC-LAG multihomed Ethernet Ring, or some other type of active-standby multihomed Ethernet Ring, etc.) (ring) is avoided. The exemplary multihomed ring running Ethernet Ring Protection (ERP) protocol includes a Ring Protection Link (RPL), a first node and a second node linked with a designated border router and a standby border router of the network, respectively. The data traffic loss in the multihomed ring is avoided by (i) receiving an indication that the link between the first node and the designated border router has failed; and (ii) invoking, responsive to the received indication, an ERP Media Access Control (MAC)-flush in the ring, even in the absence of a failed link in the ring and without activating the specified RPL. The ERP MAC-flush causes subsequent data packets from each of the plurality of nodes in the ring to be forwarded to the standby border router via the second node.
Abstract:
Techniques are described for avoiding traffic black-holing in a multi-homed Ethernet virtual private networks (EVPNs) in which a customer device (CE) is multi-homed to a plurality of multi-homing provider edge devices (PEs) via respective links of an Ethernet segment. An overlay network is created over the Ethernet segment, and the multi-homing PEs of the EVPN are configured with a common anycast IP address for respective virtual network interfaces. Upon election as active designated forwarder (DF) for the EVPN, the DF PE of the multi-homing PEs advertises toward the customer network an IGP metric for the anycast IP address that is lower than the IGP metric(s) advertised by any of the non-DF standby PE routers segment to direct the CE to forward network packets from the customer network to the DF PE over the respective link of the Ethernet segment.
Abstract:
Techniques are described for avoiding traffic black-holing in a multi-homed Ethernet virtual private networks (EVPNs) in which a customer device (CE) is multi-homed to a plurality of multi-homing provider edge devices (PEs) via respective links of an Ethernet segment. An overlay network is created over the Ethernet segment, and the multi-homing PEs of the EVPN are configured with a common anycast IP address for respective virtual network interfaces. Upon election as active designated forwarder (DF) for the EVPN, the DF PE of the multi-homing PEs advertises toward the customer network an IGP metric for the anycast IP address that is lower than the IGP metric(s) advertised by any of the non-DF standby PE routers segment to direct the CE to forward network packets from the customer network to the DF PE over the respective link of the Ethernet segment.
Abstract:
A method and network device to execute an Ethernet Virtual Private Network (EVPN) protocol to configure the network device to participate as one of a plurality of customer edge (CE) routers that provide an active-active configuration for an Ethernet segment coupling the CE routers to a plurality of provider edge (PE) routers, wherein the processor is configured to determine whether a packet that is to be forwarded is an operations, administration, and management (OAM) packet; in response to determining that the packet comprises an OAM packet, replicate the OAM packet for one or more interface links of an Ethernet segment associated with the CE router; configure forwarding instructions to the one or more interface links of the Ethernet segment associated with the CE router; and forward the OAM packet and the replicated OAM packets to the PE routers.
Abstract:
In one example, a method includes configuring a first provider edge (PE) router of a Provider Backbone Bridging (PBB) Ethernet Virtual Private Network (EVPN) to join an Ethernet Segment in active-active mode with at least a second PE router that is operating as a designated forwarder for the Ethernet Segment; receiving, by the first PE router from a remote PE router and prior to the first PE router performing Media Access Control (MAC) learning of a customer-MAC (C-MAC) address that is reachable via a backbone-MAC (B-MAC) address associated with the Ethernet Segment, a network packet that includes the C-MAC address; and in response to determining that the C-MAC address has not been learned by the first PE router and the B-MAC address included in the network packet is associated with the Ethernet Segment, forwarding, by the first PE router, the network packet to a destination identified by the C-MAC address.
Abstract:
Techniques are described for supporting designated forwarder election for a multi-homed Ethernet virtual private network (EVPN) data center interconnect (DCI) between multiple data centers by leveraging and utilizing adjacency state information learned from a multicast routing protocol that controls multicast distribution within an underlying transport network of a local data center. For example, a set or routers operating to provide a multi-homed EVPN DCI may utilize adjacency state information learned from a Protocol Independent Multicast (PIM) executing within the underlying transport network of a multi-homed data center to facilitate selection of a designated forwarder for the EVPN between the data centers. By leveraging adjacency state information, an enhanced DF election may be automatically performed for the EVPN to facilitate selection of a designated forwarder in a manner that may avoid loss of traffic in situations where a topology event in the underlying transport network of the data center.
Abstract:
A device may transmit, to one or more network devices of a portion of a network, information indicating that the device is configured to perform a static designated forwarder election procedure. The device may determine that the one or more network devices of the portion of the network are each configured to perform the static designated forwarder election procedure. The device may enable a static designated forwarder configuration of the device based on determining that the one or more network devices of the portion of the network are each configured to perform the static designated forwarder election procedure.
Abstract:
In some examples, a router comprising a control unit comprising a processor, the control unit configured to receive configuration data defining a measurement endpoint for measuring performance of a layer 3 (L3) service and associating the measurement endpoint with a remote measurement endpoint of a remote router. The control unit is further configured to encapsulate, to generate a flow measurement packet, a layer 2 (L2) measurement packet in a layer 4 (L4) header and an L3 header that identify a measurement flow. The control unit is further configured to output the flow measurement packet to the remote router.