Abstract:
Techniques are described to provide layer 2 (L2) circuit failover in the event connectivity to an Ethernet Virtual Private Network (EVPN) instance is lost. For example, if one of multi-homed provider edge (PE) devices loses connectivity to the EVPN instance, the PE device may mark its customer-facing interface as down and propagate the interface status to the access node such that the access node may update its routing information to switch L2 circuits to another one of the multi-homed PE devices having reachability to the EVPN instance. In some examples, the plurality of PE devices may further implement Connectivity Fault Management (CFM) techniques to propagate the interface status to the access node such that the access node may update its forwarding information to send traffic on a different L2 circuit to another one of the multi-homed PE devices having reachability to the EVPN instance.
Abstract:
A device may receive a route identifier that includes a range identifier or a configuration identifier. The range identifier may identify a range of broadcast domain identifiers associated with a first device. The configuration identifier may identify an Ethernet segment identifier (ESI) configuration of the first device. The device may identify the range identifier or the configuration identifier included in the route identifier. The device may select a designated forwarder from among multiple devices based on the range of broadcast domain identifiers or based on identifying the configuration identifier. The designated forwarder may be the same designated forwarder selected by at least one other device.
Abstract:
A network device operable as a provide edge router is described. The network device comprises one or more processors operably coupled to a memory; a configuration interface configured for execution by the one or more processors to receive configuration data configuring the network device as a provider edge router of an intermediate layer 3 network to provide multi-homed layer 2 virtual bridge connectivity to a customer edge device using an active-standby mode of operation; and a routing process configured for execution by the one or more processors to send, to a remote provider edge router in response to determining the network device is able to send layer 2 packets to the customer edge device, a route advertisement that includes a static route specifying a layer 3 address of the customer edge device as a next-hop for a layer 3 subnet.
Abstract:
Techniques are described to provide layer 2 (L2) circuit failover in the event connectivity to an Ethernet Virtual Private Network (EVPN) instance is lost. For example, if one of multi-homed provider edge (PE) devices loses connectivity to the EVPN instance, the PE device may mark its customer-facing interface as down and propagate the interface status to the access node such that the access node may update its routing information to switch L2 circuits to another one of the multi-homed PE devices having reachability to the EVPN instance. In some examples, the plurality of PE devices may further implement Connectivity Fault Management (CFM) techniques to propagate the interface status to the access node such that the access node may update its forwarding information to send traffic on a different L2 circuit to another one of the multi-homed PE devices having reachability to the EVPN instance.
Abstract:
In some examples, a router comprising a control unit comprising a processor, the control unit configured to receive configuration data defining a measurement endpoint for measuring performance of a layer 3 (L3) service and associating the measurement endpoint with a remote measurement endpoint of a remote router. The control unit is further configured to encapsulate, to generate a flow measurement packet, a layer 2 (L2) measurement packet in a layer 4 (L4) header and an L3 header that identify a measurement flow. The control unit is further configured to output the flow measurement packet to the remote router.
Abstract:
Techniques are described to provide layer 2 (L2) circuit failover in the event connectivity to an Ethernet Virtual Private Network (EVPN) instance is lost. For example, if one of multi-homed provider edge (PE) devices loses connectivity to the EVPN instance, the PE device may mark its customer-facing interface as down and propagate the interface status to the access node such that the access node may update its routing information to switch L2 circuits to another one of the multi-homed PE devices having reachability to the EVPN instance. In some examples, the plurality of PE devices may further implement Connectivity Fault Management (CFM) techniques to propagate the interface status to the access node such that the access node may update its forwarding information to send traffic on a different L2 circuit to another one of the multi-homed PE devices having reachability to the EVPN instance.
Abstract:
Techniques are described to provide layer 2 (L2) circuit failover in the event connectivity to an Ethernet Virtual Private Network (EVPN) instance is lost. For example, if one of multi-homed provider edge (PE) devices loses connectivity to the EVPN instance, the PE device may mark its customer-facing interface as down and propagate the interface status to the access node such that the access node may update its routing information to switch L2 circuits to another one of the multi-homed PE devices having reachability to the EVPN instance. In some examples, the plurality of PE devices may further implement Connectivity Fault Management (CFM) techniques to propagate the interface status to the access node such that the access node may update its forwarding information to send traffic on a different L2 circuit to another one of the multi-homed PE devices having reachability to the EVPN instance.
Abstract:
A network device operable as a provide edge router is described. The network device comprises one or more processors operably coupled to a memory; a configuration interface configured for execution by the one or more processors to receive configuration data configuring the network device as a provider edge router of an intermediate layer 3 network to provide multi-homed layer 2 virtual bridge connectivity to a customer edge device using an active-standby mode of operation; and a routing process configured for execution by the one or more processors to send, to a remote provider edge router in response to determining the network device is able to send layer 2 packets to the customer edge device, a route advertisement that includes a static route specifying a layer 3 address of the customer edge device as a next-hop for a layer 3 subnet.
Abstract:
An example router includes a control unit configured to receive virtual private network (VPN) routing and forwarding table (VRF) configuration data defining a VRF for a VPN and VPN address space for the VPN, receive configuration data defining a measurement endpoint for measuring performance of a layer 3 (L3) service and associating the measurement endpoint with a remote measurement endpoint of a remote router. The control unit is configured to encapsulate, to generate a flow measurement packet, a layer 2 (L2) measurement packet in a layer 4 (L4) header and an L3 header, where the L3 header includes a source L3 address within the VPN address space and associated with the measurement endpoint, and where the L3 header includes a destination L3 address within the VPN address space and associated with the remote measurement endpoint. The control unit is configured to output the flow measurement packet to the remote router.