Abstract:
An apparatus for reducing electromagnetic interference in redundant power systems may include an inductor capable of being electrically coupled between first and second power sources and an electrical load. The apparatus may also include a first return-current path that electrically couples a return terminal of the electrical load to a return terminal of the first power source. The first return-current path may include a winding wound around a core of the inductor. The apparatus may further include a second return-current path that electrically couples the return terminal of the electrical load to a return terminal of the second power source. The second return-current path may include a winding wound around the core of the inductor. Various other apparatuses, systems, and methods are also disclosed.
Abstract:
The disclosed apparatus may include a lock that has a locking mechanism that secures an electronic module to a telecommunication system. The lock may also have an ejection handle coupled to the locking mechanism such that application of physical force to the ejection handle ejects the electronic module from the telecommunication system by undoing the locking mechanism. The disclosed apparatus may also include a cross-bar coupled to the lock and movable in conjunction with the ejection handle. The cross-bar may facilitate access to a row of power connectors arranged along a surface of the electronic module when the ejection handle is positioned in a first position. Additionally or alternatively, the cross-bar may block access to the row of power connectors arranged along the surface of the electronic module when the ejection handle is positioned in a second position. Various other apparatuses, systems, and methods are also disclosed.
Abstract:
A system may include a power module that includes a group of power supplies, particular ones of the group of power supplies being operable at a group of voltages ranging from a first voltage to a second voltage. The system may further include a controller coupled to the particular ones of the group of power supplies, the controller being to ramp up an output voltage, associated with the group of power supplies, from the first voltage to the second voltage in a group of discrete steps; where ramping up the output voltage by a particular one of the group of discrete steps is performed while a load is receiving power from the group of power supplies; and where ramping up the output voltage by a particular one of the group of discrete steps prevents over-current protection on the group of power supplies from being activated.
Abstract:
Techniques are described for determining whether power from a first power source is unavailable to a power supply module. In response to determining that power from the first power source is unavailable, the techniques de-couple the first power source from one or more components of an electronic device connected to an output of the power supply module with one or more de-coupling components of the power supply module that connect an automatic transfer switch (ATS) of the power supply module to an output of the power supply module. Subsequent to de-coupling the first power source from the one or more components of the electronic device, the techniques de-couple a power supply module from the first power source. The techniques couple the power supply module to a second power source for delivering power to the one or more components of the electronic device.
Abstract:
A secondary protection device may receive a voltage surge. The voltage surge may be received based on a failure associated with a primary protection device. The secondary protection device may protect a piece of protected equipment from the voltage surge based on receiving the voltage surge. The secondary protection device may generate a failure notification based on protecting the piece of protected equipment from the voltage surge. The failure notification may indicate the failure associated with the primary protection device. The secondary protection device may provide the failure notification.
Abstract:
The disclosed apparatus may include (1) at least one unregulated power input that facilitates feeding unregulated electrical power to a telecommunications device, (2) at least one regulated power input that facilitates feeding regulated electrical power to the telecommunications device, and (3) at least one ORing power device that (A) provides unregulated electrical power from the unregulated power input to the telecommunications device when the unregulated electrical power is above a certain threshold and (B) provides regulated electrical power from the regulated power input to the telecommunications device when the unregulated electrical power is below the certain threshold. Various other apparatuses, systems, and methods are also disclosed.
Abstract:
Techniques are described for determining whether power from a first power source is unavailable to a power supply module. In response to determining that power from the first power source is unavailable, the techniques de-couple the first power source from one or more components of an electronic device connected to an output of the power supply module with one or more de-coupling components of the power supply module that connect an automatic transfer switch (ATS) of the power supply module to an output of the power supply module. Subsequent to de-coupling the first power source from the one or more components of the electronic device, the techniques de-couple a power supply module from the first power source. The techniques couple the power supply module to a second power source for delivering power to the one or more components of the electronic device.