摘要:
The present invention relates to therapeutic uses of ErbB ligands, including betacellulin. The therapeutic uses include methods of using ErbB ligand family compounds alone, or in conjunction with other agents, for reducing blood glucose levels, treating Type I and Type II diabetes, obesity, muscle wasting diseases, and cardiotoxicity.
摘要:
The present invention relates to therapeutic uses of ErbB ligands, including betacellulin. The therapeutic uses include methods of using ErbB ligand family compounds alone, or in conjunction with other agents, for reducing blood glucose levels, treating Type I and Type II diabetes, obesity, muscle wasting diseases, and cardiotoxicity.
摘要:
The present invention relates to therapeutic uses of Semaphorin 3F or related proteins. The therapeutic uses include methods of using Semaphorin 3F compounds alone, or in conjunction with other agents, for the stimulation of neuromuscular regeneration, and the treatment of diseases or conditions characterized by muscle denervation and muscle atrophy.
摘要:
Provided herein are novel polypeptides, polynucleotides and compositions containing such, and to methods useful in treating diseases, disorders, or conditions of the central nervous system (CNS) associated with demyelination. The novel polypeptides, polynucleotides stimulate oligodendrocyte precursor cell (OPC), and are capable of promoting myelination or remyelination in a subject.
摘要:
A composition is provided that contains a polypeptide and a modulator or a cell comprising the polypeptide and a modulator, where the modulator specifically interferes with the activity of the polypeptide, and the polypeptide is either FGFR3 or FGFR4, inclusive of all polymorphic forms and variants thereof. The modulator can be an antibody or active fragments thereof, a small molecule drug, an RNAi molecule, an antisense molecule or a ribozyme. A method of treatment of tumors in a subject is also provided where an antagonist of FGFR3 or FGFR4 is administered to the subject.
摘要:
Methods of therapy for B-cell malignancies are provided. The methods comprise administering a therapeutically effective amount of an antagonist anti-CD40 antibody or antigen-binding fragment thereof to a patient in need thereof. The antagonist anti-CD40 antibody or antigen-binding fragment thereof is free of significant agonist activity when the antibody binds a CD40 antigen on a normal human B cell, exhibits antagonist activity when the antibody binds a CD40 antigen on a malignant human B cell, and can exhibit antagonist activity when the antibody binds a CD40 antigen on a normal human B cell. Antagonist activity of the anti-CD40 antibody or antigen-binding fragment thereof beneficially inhibits proliferation and/or differentiation of malignant human B cells.