摘要:
It is described a method for medical image comparison purposes, comprising the step of generating a first global image or mask with increased similarity to a second global image, wherein the first global image comprises at least partially a composition of different pre-captured images of a patient; wherein the pre-captured images are captured at different times.
摘要:
In real-time three-dimensional imaging the choice of the visualization method and orientation is crucial for intervention success. The key question is what to ignore and what to show in real-time applications, where user control is not appropriate. An intervention (caused by a user) to an object of interest is visualized without the requirement of an interactive input by the user. Parameters for a visualization procedure are automatically chosen during data acquisition which may allow for an efficient tracking of the actual orientation and relative position of the structure with respect to the object of interest.
摘要:
It is described a method for medical image comparison purposes, comprising the step of generating a first global image or mask with increased similarity to a second global image, wherein the first global image comprises at least partially a composition of different pre-captured images of a patient; wherein the pre-captured images are captured at different times.
摘要:
It is disclosed a method and a device for measurement of a flow in an object, especially a lumen or a vessel, comprising: generating a temporal sequence of images of the object; determining reliability maps, whereas a reliability map corresponds to an image of the object. Another exemplary embodiment is a method and a device for calculating flow parameters (13), comprising: comparing (15) of a predicted image of a flow (16) with an image of a flow (17) with respect to a reliability map (18) of an image of the flow; and adaptation (12) of the predicted flow (16) with respect to the result of the comparing (15). Furthermore, it is described a computer program having instructions recorded thereon in order to execute one of the above-mentioned methods.
摘要:
In real-time three-dimensional imaging the choice of the visualization method and orientation is crucial for intervention success. The key question is what to ignore and what to show in real-time applications, where user control is not appropriate. The invention addresses this problem by visualizing an intervention (caused by a user) to an object of interest without the requirement of an interactive input by the user. Advantageously, according to an exemplary embodiment of the present invention, parameters for a visualization procedure are automatically chosen during data acquisition which may allow for an efficient tracking of the actual orientation and relative position of the structure with respect to the object of interest.
摘要:
The invention relates to a device and a method for displaying a vessel (2) with the aid of intravascular ultrasound images (1). A sequence of intravascular ultrasound images (I(E,x)) is generated by means of a probe (5) and stored in a memory (10) in a manner indexed by the associated location (x) where they were generated and also the associated heartbeat phase (E) and/or breathing phase. During a subsequent medical intervention, those ultrasound images (I1,12,13) which best correspond to the heartbeat phase of a current fluoroscopic image (At) or belong to the current stopping location of a catheter (13) can be selected from the memory (10) and displayed on a monitor (12).
摘要:
Methods for displaying a vessel with the aid of intravascular ultrasound images and current location and cycle information provided by detectors and sensors. A sequence of intravascular ultrasound images are stored and indexed-by location and by heartbeat and breathing phase. During a subsequent medical intervention, ultrasound images that correspond to the current phase and location of an object of interest such as a catheter can be selected and displayed on a monitor in real time along with an x-ray image of the vessel, the display showing the geometric position of the ultrasound images with reference to the x-ray image.
摘要:
The present invention relates to the determination of the specific orientation of an object. In order to provide enhanced positioning information of an object to a user, a medical imaging system and a method for operating of a medical imaging system are proposed wherein 2D image data (14) of an object is acquired (12) with an imaging system, wherein the object is provided with at least three markers visible in the 2D image; and wherein (16) the markers are detected in the 2D image; and wherein the spatial positioning and rotation angle (20) of the object in relation to the system geometry is identified (18) on behalf of the markers; and wherein an object-indicator (24) is displayed (22) indicating the spatial positioning and rotation angle of the object.
摘要:
Medical imaging modalities generate increasingly more and very large three-dimensional data sets. According to an exemplary embodiment of the present invention, a three-dimensional data set of an object of interest is interactively visualized with a varying sampling rate in an image. Advantageously, a focus area may be moved by a user interactively during rendering, wherein the sampling rate of a particular part of the image is defined by its relative position to the focus area. Advantageously, this may allow for an improvement of an overall rendering performance.
摘要:
The present invention relates to the determination of the specific orientation of an object. In order to provide enhanced positioning information of an object to a user, a medical imaging system and a method for operating of a medical imaging system are proposed wherein 2D image data (14) of an object is acquired (12) with an imaging system, wherein the object is provided with at least three markers visible in the 2D image; and wherein (16) the markers are detected in the 2D image; and wherein the spatial positioning and rotation angle (20) of the object in relation to the system geometry is identified (18) on behalf of the markers; and wherein an object-indicator (24) is displayed (22) indicating the spatial positioning and rotation angle of the object.