Abstract:
An electric rotating machine according to an embodiment includes a stator element, a rotor element, and a housing. The rotor element is rotatable about a rotation axis. The housing houses the stator element and the rotor element, and is provided with an electric insulating portion on a part of or whole of an inner surface including a surface facing at least one of the stator element and the rotor element.
Abstract:
According to one embodiment, a rotating electrical machine includes an annular winding, L (L is an arbitrary integer) stator magnetic poles, and L rotor magnetic poles having the same polarity. The L stator magnetic poles are disposed apart from each other in a rotational direction and facing the winding. The L rotor magnetic poles have the same polarity as each other. The L rotor magnetic poles are disposed apart from each other in the rotational direction and configured to face the L stator magnetic poles If an order of the fundamental wave component of a torque pulsation is N, M (M≦L) distances between centers of the adjacent poles between pole centers in one set of either the L stator magnetic poles or the L rotor magnetic poles are combinations of (Θ, Θ+Θ1/M, Θ+Θ1×2/M, . . . , and Θ+1×(M−1)/M), and Θ1 satisfies the relationship (180°/N)
Abstract:
An electric rotating machine according to an embodiment includes a stator, and a rotor that is rotatable about a rotational center. The stator includes a winding having an annular shape with the rotational center, a first core, and a second core. The first core surrounds a part of the winding, and has a pole face to which a magnetic flux is input in a first direction, and a pole face from which the magnetic flux is output in the first direction. The second core surrounds a part of the winding, and has a pole face to which a magnetic flux is input in a second direction, and a pole face from which the magnetic flux is output in the second direction. The rotor is positioned spaced from the first core and the second core, and is rotatable about the rotational center, relatively with respect to the stator.
Abstract:
According to one embodiment, a rotating electrical machine includes a shaft, an annular winding, a stator, a rotor, and a core supporter. The annular winding extends in a rotation direction of the shaft. The stator core includes a plurality of stator magnetic poles. The plurality of stator magnetic poles are arranged along the winding. The rotor core includes a plurality of rotor magnetic poles. The plurality of rotor magnetic poles are configured to face the plurality of stator magnetic poles. The core supporter is configured to support at least one of the stator core and the rotor core. The core supporter includes a first insulating section. The first insulating section extends in an axial direction of the shaft. The first insulating section has a slit-shape.
Abstract:
According to an embodiment, an electric rotating machine includes a rotor element, an annular coil, a plurality of stator cores, and a plurality of wedge members. The rotor element is rotatable around a rotation axis. The coil is provided to be coaxial with the rotation axis. The plurality of stator cores are provided opposite to the rotor element and each includes a pair of magnetic pole parts opposing each other with the coil being interposed therebetween. Each of the plurality of wedge members is arranged between adjacent stator cores to apply preloads to the adjacent stator cores, the preloads containing components in a rotation direction of the rotor element and being opposite to each other.
Abstract:
According to one embodiment, a control apparatus for controlling a sensor that operates on power supplied by a power generator via an electric circuit including a rectifying and smoothing circuit converting AC power output from the power generator into DC power and a converter transforming an output voltage of the rectifying and smoothing circuit includes a first and a second signal generator and a controller. The first signal generator generates a first signal based on the output voltage of the rectifying and smoothing circuit. The second signal generator generates a second signal based on an output voltage of the converter. The controller switches an operation mode of the sensor between a sleep mode and an active mode based on the first and second signals.
Abstract:
According to one embodiment, a power generation system includes a power generator, a displacement measuring part, and a converter. The power generator includes a movable part and converts mechanical energy of the movable part into electric power. The displacement measuring part measures a displacement of the movable part. The converter includes a switching circuit whose duty ratio is controlled based on the measured displacement, and converts a voltage level of the electric power.
Abstract:
A power generation system in an embodiment includes a power generator, a rectifying and smoothing circuit, a converter, a voltage measurement unit, and a switch. The power generator outputs AC power. The rectifying and smoothing circuit converts the AC power to DC power and smooths the DC power. The voltage measurement unit measures an average voltage of the AC power or a voltage of the smoothed DC power. The converter transforms the smoothed DC power. The switch is disposed between the rectifying and smoothing circuit and the converter, and becomes an ON state when the measured voltage becomes a reference voltage or higher.
Abstract:
According to one embodiment, a rotary electric machine includes a rotor that is rotatable at a predetermined position and includes a plurality of first magnetic members arranged along an outer circumferential surface, the first magnetic members each including a first magnetic pole and a second magnetic pole. The rotary electric machine includes a first supporting member that surrounds a periphery of the rotor. The rotary electric machine includes a plurality of second supporting members that are fixed to an inner circumferential surface of the first supporting member. The rotary electric machine includes a plurality of second magnetic members that are fixed on side surfaces of the second supporting members and that have a third magnetic pole facing the first magnetic pole with an air gap and a fourth magnetic pole facing the second magnetic pole with an air gap.
Abstract:
According to an embodiment, a transport device includes: a vehicle body including a fork portion that supports a load, a lift portion that drives the fork portion up and down, a movable carriage portion that supports the lift portion, and is movable on a traveling surface by driving a drive wheel, and an auxiliary leg portion that is provided in the movable carriage portion, is movable along a longitudinal direction of the fork portion, and has an auxiliary wheel having a variable position with respect to the movable carriage portion; and a control unit that, in a case where a step is present on the traveling surface, controls operations of the lift portion, the movable carriage portion, and the auxiliary leg portion such that the movable carriage portion climbs the step, based on the position of the center of gravity calculated by a calculation unit.