Abstract:
According to one embodiment, a method of producing a secondary battery is provided. The method includes preparing a battery architecture including a positive electrode, a negative electrode, and an electrolyte; adjusting a positive electrode potential to a range of 3.4 V to 3.9 V and a negative electrode potential to a range of 1.5 V to 2.0 V based on an oxidation-reduction potential of lithium, thereby providing a potential adjusted state; and holding the battery architecture in the potential adjusted state at a holding temperature of 50° C. to 90° C. The positive electrode includes a lithium-nickel-cobalt-manganese composite oxide. The negative electrode includes a niobium-titanium composite oxide. The electrolyte includes one or more first organic solvent having a viscosity of 1 cP or less.
Abstract:
According to one embodiment, a secondary battery includes a positive electrode, a negative electrode, a separator layer, and a nonaqueous electrolytic solution. The separator layer includes a first porous layer containing a solid electrolyte and a second porous layer containing fibers. The second porous layer is in contact with a first surface of the first porous layer. The nonaqueous electrolytic solution includes a first solvent including at least one of methyl propionate and ethyl propionate, and a second solvent different from the first solvent. The first porous layer has a void fraction of 10% by volume or greater and 50% by volume or less. The second porous layer has a void fraction greater than the void fraction of the first porous layer.
Abstract:
An electrode for a secondary battery comprises a current collector; and an active material-containing layer has active materials which comprise titanium-containing composite oxide having an orthorhombic crystal structure and represented by a general formula Li2+aM12−bTi6−cM2dO14+δ;wherein the active material-containing layer has intensity ratio Ia/Ib in an X-ray diffraction pattern of the active material-containing layer, the Ia and the Ib are obtained by powder X-ray diffraction method using Cu-Kα ray, the intensity ratio is within a range of 0.5≤Ia/Ib≤2, the Ia is the strongest intensity of a diffraction peak among diffraction peaks appearing within a range of 42°≤2θ≤44°, and the Ib is the strongest intensity of a diffraction peak among diffraction peaks appearing within a range of 44°
Abstract:
According to one embodiment, an electrode including an active material-containing layer and a film is provided. The active material-containing layer contains an active material containing a titanium-containing oxide. The film is present on at least a part of a surface of the active material-containing layer. The film contains fluorine, an organic atom, and a metal ion. The fluorine includes fluorine bonded to the organic atom and fluorine bonded to the metal ion. The film satisfies a relationship of following formula (1), where F1 is a proportion of the fluorine bonded to the organic atom, and F2 is a proportion of the fluorine bonded to the metal ion: 0.1≤F2/F1≤0.6 (1).
Abstract:
In one embodiment, a secondary battery includes, electrode groups, an insulating sheet, and a container member. The insulating sheet is disposed between the electrode groups. At least part of the insulating sheet is joined to the container member. The container member covers the outside of a stack having the electrode groups and the insulating sheet.
Abstract:
According to one embodiment, a positive electrode active material includes particles and a coating layer. The particles includes a first compound represented by the general formula LiMSO4F wherein M is at least one element selected from the group consisting of Fe, Mn, and Zn. The coating layer coats at least one part of surfaces of the particles. The coating layer includes a second compound represented by the general formula LiM′PO4 wherein M′ is at least one element selected from the group consisting of Fe, Mn, Co, and Mg.
Abstract:
An electrode includes an active material-containing layer. The active material-containing layer includes an active material containing a titanium-containing composite oxide, and carbon fiber. The active material-containing layer has a peak indicating a maximum logarithmic differential pore volume, in a logarithmic differential pore volume distribution curve by mercury porosimetry. A pore diameter PD at the peak is greater than 0.1 μm and 0.3 μm or less.
Abstract:
In general, according to one embodiment, an electrode material is provided. The electrode material includes at least one of niobium titanium oxide or titanium dioxide. A moisture content measured by a Karl Fischer method is in a range of 2000 ppm or more and 10,000 ppm or less.
Abstract:
According to one embodiment, a secondary battery including a negative electrode. The negative electrode includes a negative electrode current collector and a negative electrode mixture layer. A thickness of the negative electrode current collector is in a range of 8 μm to 18 μm. The negative electrode current collector includes a first current collector end surface extending along a stacking direction. The negative electrode mixture layer includes a niobium-titanium composite oxide, and a first protrusion protruding from the first current collector end surface along a first direction orthogonal to the stacking direction. A protrusion length A1 of the first protrusion satisfies 0 mm
Abstract:
According to one embodiment, an active material is provided. The active material includes an Nb2TiO7 phase and at least one Nb-rich phase selected from the group consisting of an Nb10Ti2O29 phase, an Nb14TiO37 phase, and an Nb24TiO64 phase. The active material satisfies a peak intensity ratio represented by the following Formula (1). 0