Abstract:
Provided is an operation command generation device, which is configured to generate an operation command, which is a collection of jobs to be performed by a process system of at least a robot, based on a protocol chart of at least a plurality of process symbols, the operation command generation device circuitry includes: a job generation unit configured to generate, based on the protocol chart, a job; a priority instruction unit configured to instruct a priority condition for determining a job execution order; and an execution order determination unit configured to determine an execution order of the jobs based on the priority instructed by the priority instruction unit by using a first condition about repeatedly execution of the jobs according to the number of the containers and a second condition about execution order of the jobs according to the arrangement of the process symbols in the protocol chart.
Abstract:
After a forward end of a workpiece is inserted into a through-hole and fitting is started, a follow operation of moving the workpiece to follow the shape of the through-hole is performed during the movement of the workpiece in a fitting direction. At this time, the workpiece is fitted into the through-hole while a control point of a robot is changed in a direction opposite to the fitting direction according to the amount of movement of the workpiece in the fitting direction.
Abstract:
A mobile robot includes a truck capable of traveling by servo control, a robot arm mounted on the truck, and a control portion servo-controlling the traveling of the truck. The control portion is configured to set a servo gain of the servo control for the truck to a robot arm operation gain during the operation of the robot arm.
Abstract:
A robot system includes a first cell and a second cell. The first cell includes a first robot, a first controller, and a first casing. The first robot performs work on a to-be-worked material. The first controller controls the first robot. The first casing accommodates the first robot and the first controller. The second cell includes a second robot, a second controller, and a second casing. The second robot performs work on a to-be-worked material. The second controller controls the second robot. The second casing accommodates the second robot and the second controller. When the first casing and the second casing are connected to each other, the first controller and the second controller respectively control the first robot and the second robot to work in a common operation area, where a first movable area and a second movable area overlap.
Abstract:
A robot system includes: a first robot; a second robot; and circuitry configured to: control the first and second robots to execute a collaborative operation on a work piece; and control, in response to a detection of an irregular state of the first robot during the collaborative operation, the first and second robots to execute a collaborative counteractive operation to eliminate the irregular state.
Abstract:
A manipulation unit includes a body, a tool holder, and a manipulated portion. The body has a first end, a second end opposite to the first end, and a peripheral surface connecting the first end and the second end. The first end is attachable to a robot arm. The tool holder is connected to the second end and configured to hold a tool. The manipulated portion is provided on the peripheral surface. The manipulated portion includes a manipulation surface and a surrounding portion. The robot arm is to be operated via the manipulation surface. The surrounding portion surrounds the manipulation surface such that the manipulation surface is recessed from the surrounding portion.
Abstract:
A robot teaching system according to an embodiment includes a robot, a sensor, a screen generator, an adjuster, and a job generator. The sensor measures measured values relating to operations of the robot. The screen generator generates a teaching operation screen that includes guidance information intended for the teacher. The adjuster adjusts parameters for generating a job based on specified values relating to the operations of the robot and input in the teaching operation screen, and the measured values of the sensor associated with the specified values, the parameters defining an operation command including corrections of the operations of the robot. The job generator generates the job in which the parameters adjusted by the adjuster are incorporated.
Abstract:
A robot system includes a robot, a first movable object on which the robot is mounted and which is configured to move with the robot, a camera mounted on the first movable object to take, while the first movable object is moving, a plurality of images of a reference object that relates to a position of a workpiece, and circuitry configured to control the robot to operate on the workpiece based on the plurality of images while the first movable object is moving.
Abstract:
A robot system includes a robot including leading end, base, and multi-articular arm, and circuitry that controls the atm to move the end based on motion control program specifying transition over time of target position and posture of the end, the transition including correction target portion starting and ending in the transition; controls the arm to move the end in response to guided manipulation applying external force to the robot while the circuitry controls the arm; obtains relative command information based on the target position and posture at start of the correction portion and specifying the target position and posture at points in the correction portion including start and end in the correction portion; and controls the arm to move the end from the position and posture based on the information, beginning at time when movement of the arm controlled by the circuitry in response to the manipulation has ended.
Abstract:
A robot system includes a plurality of robots, a plurality of cells, a detection device, and a changer device. Each of the plurality of robots is configured to operate based on an operation command. The plurality of cells respectively accommodate the plurality of robots and are connectable to each other. The detection device is configured to detect that the plurality of cells are connected to each other. When the detection device detects that the plurality of cells are connected to each other, the changer device is configured to change at least one operation command among operation commands for the plurality of robots respectively accommodated in the connected cells.