Abstract:
A method for forming a capacitor, a capacitor formed thereby and an improved composition for a conductive coating are described. The method includes providing an anode, forming a dielectric on the anode and forming a cathode layer over the dielectric by applying an amine, a weak acid and a conductive polymer.
Abstract:
A method for forming a capacitor, a capacitor formed thereby and an improved composition for a conductive coating are described. The method includes providing an anode, forming a dielectric on the anode and forming a cathode layer over the dielectric by applying an amine, a weak acid and a conductive polymer.
Abstract:
A process for preparing a solid electrolytic capacitor comprising application of coverage enhancing catalyst followed by application of a conducting polymer layer. Coverage enhancing catalyst is removed after coating and curing.
Abstract:
A method for forming a capacitor, a capacitor formed thereby and an improved composition for a conductive coating are described. The method includes providing an anode, forming a dielectric on the anode and forming a cathode layer over the dielectric by applying a monoamine, a weak acid and a conductive polymer.
Abstract:
An improved process for forming a conjugated thiophene precursor is described as in the formation of an improved polymer prepared from the conjugated thiophene and an improved capacitor formed from the improved polymer. The improved process includes forming a thiophene mixture comprising thiophene monomer, unconjugated thiophene oligomer, optionally a solvent and heating the thiophene mixture at a temperature of at least 100° C. to no more than the lower of 250° C. or the boiling point of a component of said thiophene mixture with the lowest boiling point temperature.
Abstract:
A process for preparing a solid electrolytic capacitor comprising application of coverage enhancing catalyst followed by application of a conducting polymer layer. Coverage enhancing catalyst is removed after coating and curing.
Abstract:
An improved process for forming a conjugated thiophene precursor is described as in the formation of an improved polymer prepared from the conjugated thiophene and an improved capacitor formed from the improved polymer. The improved process includes forming a thiophene mixture comprising thiophene monomer, unconjugated thiophene oligomer, optionally a solvent and heating the thiophene mixture at a temperature of at least 100° C. to no more than the lower of 250° C. or the boiling point of a component of said thiophene mixture with the lowest boiling point temperature.
Abstract:
An improved process for forming a conjugated thiophene precursor is described as in the formation of an improved polymer prepared from the conjugated thiophene and an improved capacitor formed from the improved polymer. The improved process includes forming a thiophene mixture comprising thiophene monomer, unconjugated thiophene oligomer, optionally a solvent and heating the thiophene mixture at a temperature of at least 100° C. to no more than the lower of 250° C. or the boiling point of a component of said thiophene mixture with the lowest boiling point temperature.
Abstract:
A method for forming a capacitor, a capacitor formed thereby and an improved composition for a conductive coating are described. The method includes providing an anode, forming a dielectric on the anode and forming a cathode layer over the dielectric by applying a monoamine, a weak acid and a conductive polymer.