HYDRODESULFURIZATION CATALYST AND A METHOD OF PRODUCING THEREOF

    公开(公告)号:US20180100107A1

    公开(公告)日:2018-04-12

    申请号:US15715688

    申请日:2017-09-26

    Abstract: A single-pot method of producing a hydrodesulfurization catalyst by hydrothermally treating a hydrothermal precursor that includes a silica source, a structural directing surfactant, an aqueous acid solution, and metal precursors that contain active catalyst materials is provided. The hydrodesulfurization catalyst includes a catalyst support having SBA-15 and preferably titanium, wherein the active catalyst materials are homogenously deposited on the catalyst support. Various embodiments of said method and the hydrodesulfurization catalyst are also provided.

    YTTRIA-CONTAINING SOL-GEL COATING, ITS USE, AND MANUFACTURE

    公开(公告)号:US20200230574A1

    公开(公告)日:2020-07-23

    申请号:US16255192

    申请日:2019-01-23

    Abstract: Yttria containing hybrid organic-inorganic sol-gels may be used in coatings for capillary microextraction, optionally hyphenated to online HPLC analysis. The sol-gel reaction mixture can use an yttrium trialkoxyalkoxide, such as yttrium trimethoxyethoxide, and a [bis(hydroxyalkyl)-amino-alkyl]-terminated polydialkyl/arylsiloxane, such as [bis(hydroxyethyl)-amine] (BHEA)-terminated polydimethylsiloxane, that can undergo hydrolysis and polycondensation, to form coating materials. Capillaries coated with such sol-gels can have improved extraction efficiency compared, e.g., to pure yttria-based coatings. The CME-HPLC can analyze water samples containing analytes of varied polarity, with excellent extraction of amides, phenols, alcohols, ketones, aldehydes, and polyaromatic hydrocarbons and detection limits ranging from 0.18 to 7.35 ng/mL (S/N=3). Such capillaries can exhibit solvent stability at pH 0 to 14, RSD % between 0.6 to 6.8% (n=3), at a preparative reproducibility RSD between 4.1 and 9.9%.

    COPPER-LOADED MORDENITE ZEOLITE (Cu-MOR) CATALYST AND PROCESS FOR DIRECT METHANE OXIDATION TO METHANOL

    公开(公告)号:US20250135442A1

    公开(公告)日:2025-05-01

    申请号:US18497454

    申请日:2023-10-30

    Abstract: A method for direct methane (CH4) oxidation (DMTM) to methanol (CH3OH) includes passing an oxygen-containing feed gas stream into a reactor containing a copper-loaded mordenite zeolite (Cu-MOR) catalyst particles such that the oxygen-containing feed gas stream is in contact with the Cu-MOR catalyst particles, at a temperature of 100 to 500° C., to form an oxidized Cu-MOR catalyst. The method further includes displacing oxygen in the reactor by nitrogen purging, and further passing a CH4-containing feed gas stream through the reactor in contact with the oxidized Cu-MOR catalyst at a temperature of 50 to 200° C., thereby converting at least a portion of the CH4 to CH3OH. The method further includes regenerating the Cu-MOR catalyst particles to form a regenerated Cu-MOR catalyst. The CH3OH is adsorbed on surfaces and pores of the regenerated Cu-MOR catalyst.

Patent Agency Ranking