Abstract:
The present disclosure is directed to a method of determining at least one correctable for a process tool. In an embodiment, the method includes the steps of: measuring one or more parameter values at one or more measurement locations of each field of a selection of measured fields of a wafer; estimating one or more parameter values for one or more locations of each field of a selection of unmeasured fields of the wafer; and determining at least one correctable for a process tool based upon the one or more parameter values measured at the one or more measurement locations of each field of the selection of measured fields of the wafer and the one or more parameter values estimated for the one or more locations of each field of the selection of unmeasured fields of the wafer.
Abstract:
A process control system may include a controller configured to receive after-development inspection (ADI) data after a lithography step for the current layer from an ADI tool, receive after etch inspection (AEI) overlay data after an exposure step of the current layer from an AEI tool, train a non-zero offset predictor with ADI data and AEI overlay data to predict a non-zero offset from input ADI data, generate values of the control parameters of the lithography tool using ADI data and non-zero offsets generated by the non-zero offset predictor, and provide the values of the control parameters to the lithography tool for fabricating the current layer on the at least one production sample.
Abstract:
The present disclosure is directed to a method of determining at least one correctable for a process tool. In an embodiment, the method includes the steps of: measuring one or more parameter values at one or more measurement locations of each field of a selection of measured fields of a wafer; estimating one or more parameter values for one or more locations of each field of a selection of unmeasured fields of the wafer; and determining at least one correctable for a process tool based upon the one or more parameter values measured at the one or more measurement locations of each field of the selection of measured fields of the wafer and the one or more parameter values estimated for the one or more locations of each field of the selection of unmeasured fields of the wafer.
Abstract:
Inline yield monitoring may include the use of one or more modules of algorithmic software. Inline yield monitoring may include the use of two related algorithmic software modules such as a learning and a prediction module. The learning module may learn critical PET (parametric electrical test) parameters from data of probe electrical test yields and PET attribute values. The critical PET parameters may best separate outliers and inliers in the yield data. The prediction module may use the critical PET parameters found by the learning module to predict whether a wafer is an inlier or an outlier in a probe test classification.
Abstract:
A process control system may include a controller configured to receive after-development inspection (ADI) data after a lithography step for the current layer from an ADI tool, receive after etch inspection (AEI) overlay data after an exposure step of the current layer from an AEI tool, train a non-zero offset predictor with ADI data and AEI overlay data to predict a non-zero offset from input ADI data, generate values of the control parameters of the lithography tool using ADI data and non-zero offsets generated by the non-zero offset predictor, and provide the values of the control parameters to the lithography tool for fabricating the current layer on the at least one production sample.