Abstract:
A hoisting machine includes an axial flux motor including a rotor having rope grooves and arranged in rotor compartment between a body part and a protection plate, and a stator arranged against the rotor in such a manner that the rotor is separated by the stator by an air gap. The hoisting machine further includes a first cover plate and a second cover plate, arranged at opposite sides of the hoisting machine, and both being equipped with a damper. The tightness between the first cover plate and the second cover plate is adjustable. An elevator assembly and method of damping vibration of a hoisting machine are also disclosed.
Abstract:
A solution for detecting an entity of an elevator system based on a representation generated from measurement data is provided. The solution includes generating the representation in a frequency domain descriptive of a vibration experienced by the elevator car; determining if the representation includes a number of portions corresponding to reference data; and setting, in accordance with a determination, a detection result to express one of the following: i) an entity corresponding to a vibrational fingerprint of the reference data is present in the elevator system, ii) an entity corresponding to a vibrational fingerprint of the reference data is absent in the elevator system.
Abstract:
An elevator car arrangement includes an elevator car body and an elevator car sling. The elevator car arrangement further includes a hanging damper arranged to connect the elevator car body and the elevator car sling together for dampening vibrations coming from guide rails through the elevator car sling to the elevator car body. The hanging damper includes a first part connected to a bottom part of the elevator car body; a second part connected to the elevator car sling; and a damping element arranged to dampen vibrations coming from the second part to the first part. A method for dampening vibrations coming from guide rails through the elevator car sling to the elevator car body is disclosed.
Abstract:
In a solution for generating a machine learning model for evaluating a condition of an elevator, synthetic data descriptive of an operation of the elevator is generated; history data is generated; the synthetic data and the history data area compared; data descriptive of differences between the synthetic data and the history data is generate; a simulation model of the elevator is calibrated based on the data descriptive of the differences; calibrated synthetic data descriptive of at least one malfunction of the elevator is generated; and the machine learning model is trained with a training dataset based on the calibrated synthetic data to generate the machine learning model for evaluating a condition of the elevator.
Abstract:
An elevator car arrangement includes an elevator car body including a roof, a bottom and side walls, and an elevator car sling for being guided along vertically extending guide rails. The elevator car sling includes at least a first vertical side support, a second vertical side support and an upper horizontal support, which supports are connected to each other to form the sling. The elevator car body is connected to the elevator car sling such that the elevator car body is supported in the elevator car sling. The elevator car arrangement further includes a connection element for connecting the elevator car body to the elevator car sling such that the connection element is arranged between the roof of the elevator car body and the vertical side support of the elevator car sling, the connection element including a damper for damping vibrations caused by guide rails. A connection element for connecting an elevator car body to an elevator car sling is provided to form the elevator car arrangement.
Abstract:
A method for balancing an elevator car including a frame; a cabin box mounted on the frame; and a plurality of elastic members, such as springs, in vertical direction between the frame and the cabin box, via which elastic members the cabin box rests on the frame. The method includes measuring the vertical distance between the frame and the cabin box in several horizontally spaced apart locations with distance sensors; and adjusting the weight distribution of the cabin box by adding and/or removing weight elements on the cabin box. An arrangement for balancing an elevator car is provided to implement the method.
Abstract:
An elevator includes a car and a counterweight suspended on hoisting ropes which are driven by a drive machine. The counterweight has a first side facing the elevator car path and a second side opposite to the car path. The counterweight includes at least one connecting passage between the first and second side of the counterweight. With this solution, air pressure built between the car and the counterweight when passing in the elevator shaft is reduced and the travel comfort is improved.