Abstract:
The invention provides a lighting device configured to provide red lighting device light, the lighting device comprising: (i) a first light source configured to provide first light source light having a peak wavelength (λls); (ii) a first red luminescent material configured to absorb at least part of the first light source light and to convert into first red luminescent material light having a first red emission peak wavelength (λm1), the first red luminescent material having an excitation maximum (λx1); (iii) a second red luminescent material configured to absorb at least part of the first light source light and to convert into second red luminescent material light having a second red emission peak wavelength (λm2), the second red luminescent material having a second excitation maximum (λx2); and wherein the first luminescent material and the second luminescent material are Eu2+ based, and wherein λm1 λls.
Abstract:
A method for treating a surface layer (3) of a device (1) consisting of alumina and a corresponding device (1) are proposed. The method comprises providing the device (1) with the surface layer (3) to be treated being exposed and heating the surface layer (3) of the device (1) in an oxygen-depleted atmosphere comprising e.g. one of an inert gas, nitrogen, hydrogen, argon and a combination thereof to a temperature higher than 1000° C., preferably higher than 1700° C. for a duration of preferably more than 2 hours. Due to such treatment, a superficial layer region (7) comprised in the surface layer (3) may obtain a significantly reduced electrical resistivity which is assumed to be the result of chemically reducing this superficial layer region (7). Such reduced superficial electrical resistivity may advantageously serve for example in components of electron beam devices such as x-ray tube components for preventing any charge build-up.
Abstract:
The invention provides a lighting device configured to provide red lighting device light, the lighting device comprising: (i) a first light source configured to provide first light source light having a peak wavelength (λls); (ii) a first red luminescent material configured to absorb at least part of the first light source light and to convert into first red luminescent material light having a first red emission peak wavelength (λm1), the first red luminescent material having an excitation maximum (λx1); (iii) a second red luminescent material configured to absorb at least part of the first light source light and to convert into second red luminescent material light having a second red emission peak wavelength (λm2), the second red luminescent material having a second excitation maximum (λx2); and wherein the first luminescent material and the second luminescent material are Eu2+ based, and wherein λm1 λls.