Abstract:
A system (30) and method for detecting or predicting toxicity induced by radiation therapy. A device (34) is configured for determining polypeptide biomarkers present in a urine sample. At least one processor (36) is programmed to detect or predict radiation toxicity based on one or more polypeptide biomarkers determined to be in the urine sample.
Abstract:
A method for treating a surface layer (3) of a device (1) consisting of alumina and a corresponding device (1) are proposed. The method comprises providing the device (1) with the surface layer (3) to be treated being exposed and heating the surface layer (3) of the device (1) in an oxygen-depleted atmosphere comprising e.g. one of an inert gas, nitrogen, hydrogen, argon and a combination thereof to a temperature higher than 1000° C., preferably higher than 1700° C. for a duration of preferably more than 2 hours. Due to such treatment, a superficial layer region (7) comprised in the surface layer (3) may obtain a significantly reduced electrical resistivity which is assumed to be the result of chemically reducing this superficial layer region (7). Such reduced superficial electrical resistivity may advantageously serve for example in components of electron beam devices such as x-ray tube components for preventing any charge build-up.
Abstract:
The invention relates to a device (10) for determining spatially dependent x-ray flux degradation and photon spectral change, a system (1) for determining spatially dependent x-ray flux degradation and photon spectral change for an x-ray tube (20), a method for spatially dependent x-ray flux degradation and photon spectral change for an x-ray tube (20), a computer program element for controlling such device (10) or system (1) for performing such method and a computer readable medium having stored such computer program element. The device (10) for determining spatially dependent x-ray flux degradation and photon spectral change comprises an acquisition unit (11), a processing unit (12), a calculation unit (13), and a combination unit (14). The acquisition unit (11) is configured to acquire x-ray flux degradation data for the x-ray tube (20). The processing unit (12) is configured to process the x-ray flux degradation data into spatially dependent flux degradation data. The calculation unit (13) is configured to calculate at least a photon spectral change of the x-ray tube (20) and to convert the photon spectral change into a spatially dependent spectrum. The combination unit (14) is configured to combine the spatially dependent flux degradation data and the spatially dependent spectrum.
Abstract:
The present invention relates to a radiation detector, in particular a direct conversion radiation detector. To provide for simple distribution of provided high voltage the radiation detector comprises a plurality of detector modules (10, 20) arranged adjacent to each other. Each detector module comprises a sensor layer (14, 24) for converting incident radiation (100) into electrical charges, a first electrode (15, 25) deposited on a first surface of the sensor layer facing the incident radiation (100), a second electrode (16, 26) deposited on a second surface of the sensor layer opposite the first surface, a readout electronics (12, 22) in electrical contact with the second electrode, and a carrier (13, 23) for carrying the sensor layer and the readout electronics. The radiation detector further comprises an electrically conductive conduction layer (30, 32, 50) and an anti-scatter arrangement (40), which are arranged on top of each other and cover the plurality of detector modules on the side facing the incident radiation (100).
Abstract:
A system (30) and method for detecting or predicting toxicity induced by radiation therapy. A device (34) is configured for determining polypeptide biomarkers present in a urine sample. At least one processor (36) is programmed to detect or predict radiation toxicity based on one or more polypeptide biomarkers determined to be in the urine sample.
Abstract:
Nuclear Imaging System The invention relates to a nuclear imaging system (1) for imaging an object (3) in an examination region. Multiple x-rays sources (2) generate first radiation being x-ray radiation (5), wherein the x-ray sources are arranged such that the x-ray radiation is indicative of a property of the object. A detection unit (6) detects second radiation (7) from a nuclear element (8), after the second radiation has the traversed the object, and the first radiation generated by the multiple x-ray sources, thereby inherently registering the detection of the first radiation and the second radiation. A reconstruction unit (9) reconstructs a corrected nuclear image of the object based on the detected first radiation and the detected second radiation, wherein the nuclear image is corrected with respect to the property of the object and, because of the inherent registration, does not comprise image artifacts caused by registration errors.
Abstract:
The invention relates to a radiation application apparatus for applying radiation at a location within an object. The radiation application apparatus comprises a transforming unit (2) for being arranged within the object at the location and for transforming ultrasound energy to electrical energy, and a radiation source (4) for being arranged within the object and for generating radiation (5) to be applied at the location within the object, wherein the radiation source (4) is driven by the electrical energy. Since the transforming unit transforms the ultrasound energy to electrical energy being used by the radiation source, it is not necessary to transfer electrical energy to the radiation source, i.e., for example, corresponding cables, which may have to be isolated, are not necessarily required. Insulation problems and corresponding safety problems, which may be present, if cables, in particular, corresponding high voltage cables, are used, can therefore be reduced.
Abstract:
The present invention relates to a device (34) and a method (70) for determining a status of an X-ray tube (10) of an X-ray system (36). Due to ageing and/or wear of the X-ray tube, the spectrum of the X-ray radiation (30) provided by the X-ray tube may change over the operation time of the X-ray tube. The present invention therefore suggests evaluating spectrally different values detected with an X-ray detector arrangement (32) of the X-ray system. A reference data set representing a reference condition of the X-ray tube by a plurality of spectrally different reference-values (44) and a working data set representing an aged condition of the X-ray tube by a plurality of spectrally different working-values (46) of detected X-ray radiation are used to determine an equivalent filtration function for an filtration material influencing a source X-ray radiation (26) emitted by an anode (16) of the X-ray tube. Accordingly, the filtration function provides the information about the material being used for the filtration and/or its length, which may provide the basis to determine the condition and thus the status of the X-ray tube.
Abstract:
A system for interventional brachytherapy for generating data to be used directly for therapy and/or for therapy planning includes a radiation source which irradiates tissue of a patient and one or more radiation detectors which detect radiation delivered to the patient and generate radiation dosage data indicative thereof. One or more position sensors determine the position of the radiation source and a localization unit, in communication with the one or more position sensors, generates position data indicative of the position of the radiation source. An image database stores one or more anatomical images of the patient. A dose calculation unit which co-registers the one or more anatomical images with the positional and radiation dosage data and generates dose monitoring data based on the co-registration.
Abstract:
The invention relates to a system (31) for generating spectral computed tomography projection data. A spectral projection data generation device (6) comprising an energy-resolving detector generates spectral computed tomography projection databased on polychromatic radiation (4), which has been provided by a radiation device (2), after having traversed an examination zone (5), and a reference values generation device generates energy-dependent reference values based on radiation, which has not traversed the examination zone. A spectral parameter providing unit (12) provides a spectral parameter being indicative of a spectral property of the radiation device based on the energy-dependent reference values. In particular, spectral properties of the radiation device can be monitored over time, wherein this information can be used for, for instance, correcting the spectral computed tomography projection data, and/or, if undesired spectral properties of the radiation device are indicated, triggering a replacement of the radiation device.