Abstract:
A system includes a computing system with a processor and computer readable storage medium with computer readable and executable instructions, including a radiation plan module, a radiation plan optimization module and a radiation plan visualization module. The processor is configured to execute the instructions, which causes the processor to construct and visually present, via a display monitor, a two-dimensional plot with three-dimensions of data from a radiation plan, and two dimensions along two axes of the plot and a third dimension represented through intensity.
Abstract:
An apparatus (130) and a method for adjusting, in perfusion imaging system, a periodic contrast agent injection rate signal (IS) for an injector (135) as function of an image sampling rate determined by the rotational speed of an X-ray source (107)-detector (109) assembly of an X-ray imager (100). Frequency, periodicity and pulse width of the contrast agent injection rate signal (IS) is adjusted to mitigate temporal signal aliasing in a sample of a time attenuation contrast (TAC) signal.
Abstract:
The invention relates to a system for assisting in planning a focal therapy treatment of a structure (1) within a patient body (2) by applying a treatment quantity using one or more devices (4a,b,c) operated in one or more device positions. The system comprises a unit (10) configured to generate a constraint function representing clinical objectives relating to the treatment quantity, a selection unit (11) configured to determine, for each of at least some non-selected candidate device positions, a sum of negative derivatives of the constraint function with respect to the treatment parameter associated with the respective device position and to select a device position for use in the treatment based on a comparison of the determined sums, and an optimization unit (12; 408) configured to determine at least one optimized treatment parameter for the selected device position based on the constraint function.
Abstract:
An apparatus (130) and a method for adjusting, in perfusion imaging system, a periodic contrast agent injection rate signal (IS) for an injector (135) as function of an image sampling rate determined by the rotational speed of an X-ray source (107)-detector (109) assembly of an X-ray imager (100). Frequency, periodicity and pulse width of the contrast agent injection rate signal (IS) is adjusted to mitigate temporal signal aliasing in a sample of a time attenuation contrast (TAC) signal.
Abstract:
The invention relates to a dynamic sliding-window-like initialization for, for example, iterative VMAT algorithms. Specifically, a dynamic sliding window conversion method is contemplated where typical dynamic VMAT constraints are taken into account to find an optimal set of suitable openings (i.e. binary masks) that can be used as quasi-feasible start initialization for any VMAT algorithm that can refine until a deliverable plan is reached. Here, a multileaf leaf tip trajectory least square constrained optimization is performed to find a set of optimal unidirectional trajectories for all MLC leaf pairs of all arc points. To ensure that a quasi-feasible (or better quasi-deliverable) solution is returned, for example, a maximum dose rate, a maximum gantry speed, a maximum leafs speed, and a maximum treatment time may be enforced.
Abstract:
The invention relates to a system and a method for evaluating a treatment plan for an external radiation therapy treatment, the treatment plan comprising parameters for controlling an external radiation therapy apparatus during the treatment. The system comprises a database storing historic treatment plans and storing for each historic treatment plan a quality parameter indicative of whether a deviation between a planned dose distribution and a measured dose distribution resulting from an execution of the treatment plan is within an acceptable limit. An evaluation unit determines a threshold value for each of a plurality of treatment plan metrics based on the historic treatment plans and the associated quality parameters. Further, the evaluation unit calculates a value of each of the metrics for the treatment plan and compares the value of each of the metrics with the threshold value determined for the respective metric.
Abstract:
A radiation planning system includes a predictor-corrector optimizer unit which computes a predicted dose based on a collection of control points with a current approximate dose, each control point with a corresponding set of leaf positions, and determines an additional control point with a corresponding set of leaf positions based on a difference of the predicted fluence and the current approximate fluence through a least cost or shortest path in a layered graph structure of realizable leaf positions. Tools are described to help a planner to evaluate the effect of parameter changes to the current plan based on an identified zone of influence. The planner interactively views the current plan based on a visualization of the plan objectives and correlations between the objectives.
Abstract:
The invention relates to a system for assisting in evaluating a contour of an anatomic structure (22) with respect to a dose distribution corresponding to a treatment plan for a radiation therapy treatment of a patient. The system comprises an evaluation unit particularly configured to evaluate the dose distribution in varying distances from the contour of the anatomic structure (22) to determine at least one point where the evaluated dose distribution fulfills a predetermined condition, and to determine the distance between the at least one point and the contour and/or to visualize the at least one point to a user of the system.
Abstract:
In planning of radiation therapy treatment of at least one structure in a region of a patient body, a first treatment plan is generated on the basis of a planning image of the body region and on the basis of dose objectives. A further image of the body region of the patient body is received, and a transformation is determined for generating an adapted treatment plan from the first treatment plan and/or for generating an adapted dose distribution from the dose distribution corresponding to the first treatment plan on the basis of the further image and determines an adapted treatment plan on the basis of the transformation and/or the adapted dose distribution. The transformation on the basis of the dose objectives. In adapting the dose distribution, an efficient iterative dosimetric patient setup optimization may be employed to reduce the dose computations.
Abstract:
The present invention relates to a radiotherapy planning system (100) for determining a solution (101) corresponding to a fluence profile. The invention proposes to use a Pareto frontier navigator (140) to select the best plan from a set of various auto-planned solutions. An interactive graphical user interface (400) is provided to the planner to navigate among convex combinations of auto-planned solutions. This proposed Pareto plan navigation can be considered as a further optional refinement process, which can be applied to find the best plan in those cases where auto-generated solutions are not fully satisfying the planner's requirements. The navigation tool (400) moves locally through a set of auto-generated plans and can potentially simplify the planner's decision making process and reduce the whole planning time on complex clinical cases from several hours to minutes.