TREATMENT PLANNING FOR FOCAL THERAPY TREATMENTS

    公开(公告)号:US20220176155A1

    公开(公告)日:2022-06-09

    申请号:US17598626

    申请日:2020-04-01

    Abstract: The invention relates to a system for assisting in planning a focal therapy treatment of a structure (1) within a patient body (2) by applying a treatment quantity using one or more devices (4a,b,c) operated in one or more device positions. The system comprises a unit (10) configured to generate a constraint function representing clinical objectives relating to the treatment quantity, a selection unit (11) configured to determine, for each of at least some non-selected candidate device positions, a sum of negative derivatives of the constraint function with respect to the treatment parameter associated with the respective device position and to select a device position for use in the treatment based on a comparison of the determined sums, and an optimization unit (12; 408) configured to determine at least one optimized treatment parameter for the selected device position based on the constraint function.

    Warm start initialization for external beam radiotherapy plan optimization

    公开(公告)号:US11147985B2

    公开(公告)日:2021-10-19

    申请号:US16481998

    申请日:2018-01-24

    Abstract: The invention relates to a dynamic sliding-window-like initialization for, for example, iterative VMAT algorithms. Specifically, a dynamic sliding window conversion method is contemplated where typical dynamic VMAT constraints are taken into account to find an optimal set of suitable openings (i.e. binary masks) that can be used as quasi-feasible start initialization for any VMAT algorithm that can refine until a deliverable plan is reached. Here, a multileaf leaf tip trajectory least square constrained optimization is performed to find a set of optimal unidirectional trajectories for all MLC leaf pairs of all arc points. To ensure that a quasi-feasible (or better quasi-deliverable) solution is returned, for example, a maximum dose rate, a maximum gantry speed, a maximum leafs speed, and a maximum treatment time may be enforced.

    Planning system for adaptive radiation therapy

    公开(公告)号:US10821300B2

    公开(公告)日:2020-11-03

    申请号:US16120482

    申请日:2018-09-04

    Abstract: In planning of radiation therapy treatment of at least one structure in a region of a patient body, a first treatment plan is generated on the basis of a planning image of the body region and on the basis of dose objectives. A further image of the body region of the patient body is received, and a transformation is determined for generating an adapted treatment plan from the first treatment plan and/or for generating an adapted dose distribution from the dose distribution corresponding to the first treatment plan on the basis of the further image and determines an adapted treatment plan on the basis of the transformation and/or the adapted dose distribution. The transformation on the basis of the dose objectives. In adapting the dose distribution, an efficient iterative dosimetric patient setup optimization may be employed to reduce the dose computations.

    Radiotherapy planning system and method

    公开(公告)号:US10441811B2

    公开(公告)日:2019-10-15

    申请号:US15314698

    申请日:2015-06-25

    Abstract: The present invention relates to a radiotherapy planning system (100) for determining a solution (101) corresponding to a fluence profile. The invention proposes to use a Pareto frontier navigator (140) to select the best plan from a set of various auto-planned solutions. An interactive graphical user interface (400) is provided to the planner to navigate among convex combinations of auto-planned solutions. This proposed Pareto plan navigation can be considered as a further optional refinement process, which can be applied to find the best plan in those cases where auto-generated solutions are not fully satisfying the planner's requirements. The navigation tool (400) moves locally through a set of auto-generated plans and can potentially simplify the planner's decision making process and reduce the whole planning time on complex clinical cases from several hours to minutes.

Patent Agency Ranking