Abstract:
The invention may improve image quality of magnetic resonance imaging (MRI). The invention is directed to a coil arrangement (200) for magnetic resonance imaging. It comprises a base structure having a variable shape, an RF coil arranged on or in the base structure, an actuator means at least partially extending along the base structure such that the base structure is deformable along and/or about at least one axis, a position detecting means adapted to detect a current position of at least a portion of the subject to be examined relative to the RF coil, and control means coupled to the position detecting means and the actuator means, wherein the control means is adapted to adjust the shape of the base structure to maintain a contact of an outer surface of the base structure (210) and/or the RF coil (220) with the at least portion of the subject by driving the actuator means in response to a detected change of the current position relative to a previous position. The invention is further directed to a (MRI) system, a method for positioning an RF coil for a magnetic resonance imaging system relative to a subject to be examined, and a non-transitory computer-readable medium.
Abstract:
The invention provides for a medical instrument (100, 300, 400, 500) comprising a magnetic resonance imaging system (102). The medical instrument further comprises a subject support (120) with a support surface (121) configured for supporting at least a portion of the subject within an imaging zone (108). The subject support comprises a radar array (125) embedded below the support surface. The medical instrument further comprises a radar system (124) for acquiring a radar signal (144) from the subject. The medical instrument further comprises a motion detection system (122) configured for acquiring a movement signal (146). Execution of machine executable instructions (140) causes a processor (130) to: continuously (200) receive the radar signal; continuously (202) receive the movement signal; continuously (204) calculate a combined motion signal (148) from the radar system and the movement signal; and control (206) the magnetic resonance imaging system with the pulse sequence commands to acquire the magnetic resonance imaging data, wherein the acquisition of the magnetic resonance imaging data is controlled using the combined motion signal.
Abstract:
A respiratory monitoring device comprises: a light source (30) arranged to generate a projected shadow (S) of an imaging subject (P) positioned for imaging by an imaging device (8); a video camera (40) arranged to acquire video of the projected shadow; and an electronic processor (42) programmed to extract a position of an edge of the projected shadow as a function of time from the acquired video. In some embodiments, the light source is arranged to project the shadow onto a bore wall (20) of the imaging device, and the video camera is arranged to acquire video of the projected shadow on the bore wall. The electronic processor may be programmed to extract the position of the edge (E) as a one-dimensional function of time (46) based on the position of the edge in each frame of the acquired video and time stamps of the video frames.
Abstract:
An energy depositing therapy system (10), comprising:—an energy depositing unit (12) provided for locally depositing energy into a therapy zone (56) of a subject of interest (28) for therapy purposes;—a transducer unit (32) that is provided for applying mechanical oscillations to at least a portion of the subject of interest (28);—a magnetic resonance imaging system (14) provided for acquiring magnetic resonance imaging data from at least the portion of a subject of interest (28), comprising an image processing unit (24) configured to image the mechanical oscillations;—a control unit (40) that is connectable to the energy depositing unit (12), the transducer unit (32) and a magnetic resonance scanner (16) of the magnetic resonance imaging system (14), whereinthe control unit (40) is configured to control the depositing of energy in dependence of the processed magnetic resonance imaging data of the portion of the subject of interest (28);
Abstract:
The present invention is directed to a magnetic resonance imaging system with motion detection for examination of a patient (53), the magnetic resonance imaging system comprising an RF coil arrangement with an RF coil (4) for transmitting and/or receiving an RF signal for generating a magnetic resonance image wherein the RF coil arrangement is provided with an additional RF sensor (5) for transmitting an RF transmit signal which is adapted for interacting with the tissue (23) of the patient (53) allowing to sense motion signals due to motions of the patient (53) simultaneously to transmitting and/or receiving the RF signal for generating the magnetic resonance image. In this way movements of a patient under examination in an MRI system may be detected in an efficient and reliable way.
Abstract:
The invention provides for a magnetic resonance antenna assembly (100) comprising one or more antenna elements (106), wherein the magnetic resonance antenna assembly further comprises multiple electronic dosimeters (108, 110, 204, 604) operable for measuring a cumulative radiation dose (470) of ionizing radiation (442) received by the magnetic resonance antenna assembly.
Abstract:
The invention provides for a medical apparatus (100) with a magnetic resonance coil assembly (102, 102′) comprising a magnetic resonance antenna with a first antenna portion (108, 108′) and a second antenna portion (110, 110′) for receiving magnetic resonance location data (1246) from a fiducial marker (118, 300, 400, 500). The magnetic resonance coil assembly further comprises a clamp with a first clamping portion (104, 104′) and a second clamping portion (106, 106′) operable for being moved between an open and a closed configuration. The first clamping portion comprises the first antenna portion. The second clamping portion comprises the second antenna portion. The first and second clamping portions are operable for securing the fiducial marker within a signal reception volume (111) in the closed configuration. When in the open position, the first and second clamping portions enable the fiducial marker being moved into or out of the signal reception volume.
Abstract:
The invention provides for a medical apparatus (100, 200, 300, 500) comprising an optical imaging system (106) configured for acquiring a series of optical images (544) descriptive of cardiac motion of a subject (102). The medical apparatus further comprises a memory (534) for storing machine executable instructions (540). The medical apparatus further comprises a processor (530) for controlling the medical apparatus. Execution of the machine executable instructions causes the processor to repeatedly: acquire (400) a series of images using the optical imaging system, wherein the series of images are acquired at a rate of at least 10 frames per second; and derive (402) a cardiac motion signal (546) from the series of images, wherein the cardiac motion signal is derived by tracking motion of at least a group of pixels within the series of images.
Abstract:
The present invention provides a rheology system (202) comprising a rheology transducer device (204) for introducing mechanical waves into a subject of interest (120), whereby the rheology transducer device (204) comprises multiple transducers (212), a driving device (206) for driving the rheology transducer device (204), a sensor device (208) for sensing mechanical waves at the subject of interest (120), and a control device (210) for receiving input from the sensor device (208) and for controlling the driving device (206) based on the received input from the sensor device (208). The present invention further provides a MR rheology system (200) comprising a MR imaging system (110), and the above rheology system (202), whereby the MR imaging system (110) is adapted to control the rheology system (200). Still further, the present invention provides a rheology method comprising the steps of providing a rheology system (202) with its rheology transducer device (204) and its sensor device (208) in contact to a subject of interest (120), driving the rheology transducer device (204) to introduce mechanical waves into the subject of interest (120), sensing mechanical waves at the subject of interest (120) using the sensor device (208), and performing feedback control for driving the rheology transducer device (204) based on the mechanical waves sensed using the sensor device (208). The invention also provides MR rheology method based on the above rheology method with and without real-time feedback control.
Abstract:
The present invention provides a rheology module (200) for use in a magnetic resonance (MR) rheology imaging system (110), whereby the rheology module (200) is adapted to introduce mechanical oscillations into a subject of interest (120), comprising a housing (202), a mechanical oscillator unit (204), which extends at least partially outside the housing (202) and is movable relative to the housing (202), and a transducer (206) for moving the oscillator unit (204), whereby the rheology module (200) comprises at least one radio frequency (RF) antenna unit (210, 212), which comprises at least one RF coil (214, 216). With the RF antenna device integrated into the rheology module, an antenna placement close to a region of interest (ROI) can be achieved to improve the MR imaging capabilities of a MR rheology imaging system. Thus, imaging of the ROI can be performed more efficiently. Furthermore, connection and cabling can be facilitated, since only one module has to be connected to generate the oscillation and to operate the RF antenna device.