Abstract:
A matrix array probe including a transducer array and integrated circuitry coupled to the transducer elements dissipates heat generated by the array and integrated circuitry through the cover of the transducer probe. A pump in the probe connector pumps fluid through a closed loop system including inbound an outbound fluid conduits in the cable. The fluid conduits in the cable are separated by the cable electrical conductors for the probe. The heat transfer in the probe is done by a heat exchanger in the transducer backing block. Additional cooling may be provided by metal to metal contact with a chiller in the ultrasound system.
Abstract:
A matrix array probe including a transducer array and integrated circuitry coupled to the transducer elements dissipates heat generated by the array and integrated circuitry through the cover of the transducer probe. A pump in the probe connector pumps fluid through a closed loop system including inbound an outbound fluid conduits in the cable. The fluid conduits in the cable are separated by the cable electrical conductors for the probe. The heat transfer in the probe is done by a heat exchanger in the transducer backing block. Additional cooling may be provided by metal to metal contact with a chiller in the ultrasound system.
Abstract:
An ultrasound probe is formed with protected interconnects, thereby resulting in a more robust probe. The interconnects are mounted between an array of transducer elements and an integrated circuit. The array of transducer elements are coupled to the interconnect via flip chip bumps or other structures. Underfill material fixedly positions the interconnects to the integrated circuit. A method of making the transducer assembly is provided.
Abstract:
A matrix array probe including a transducer array and integrated circuitry coupled to the transducer elements dissipates heat generated by the array and integrated circuitry through the cover of the transducer probe. A pump in the probe connector pumps fluid through a closed loop system including inbound an outbound fluid conduits in the cable. The fluid conduits in the cable are separated by the cable electrical conductors for the probe. The heat transfer in the probe is done by a heat exchanger in the transducer backing block. Additional cooling may be provided by metal to metal contact with a chiller in the ultrasound system.
Abstract:
A matrix array probe including a transducer array and integrated circuitry coupled to the transducer elements dissipates heat generated by the array and integrated circuitry through the cover of the transducer probe. A pump in the probe connector pumps fluid through a closed loop system including inbound an outbound fluid conduits in the cable. The fluid conduits in the cable are separated by the cable electrical conductors for the probe. The heat transfer in the probe is done by a heat exchanger in the transducer backing block. Additional cooling may be provided by metal to metal contact with a chiller in the ultrasound system.
Abstract:
An acoustic probe includes a plurality of acoustic array components separated and spaced apart from each other. Each of the acoustic array components includes: an array of acoustic element circuits disposed contiguous to each other at a first pitch; a plurality of pads each corresponding to one of the acoustic element circuits and formed within a circuitry area of the corresponding acoustic element circuit, the pads being disposed at a second pitch; a plurality of interconnection bumps each corresponding to one of the pads and being disposed in electrical connection with the corresponding pad, wherein the interconnection bumps are disposed at a third pitch; and a plurality of acoustic transducer elements on the interconnection bumps. The acoustic transducer elements are disposed at a fourth pitch. At least two of the first, second, third, and fourth pitches are different than each other.