摘要:
Disclosed are a precursor for a rechargeable lithium battery, a positive active material including the same, a preparation method thereof, and a rechargeable lithium battery including the positive active material. More particularly, the present invention relates to a precursor including a sheet-shaped plate having a thickness of about 1 nm to about 30 nm and that is represented by the following Chemical Formula 1. NixCOyMn1-x-y-zMz(OH)2 [Chemical Formula 1] In the above Chemical Formula 1, 0
摘要:
A method of preparing a positive active material for a lithium secondary battery represented by the following Chemical Formula 1 (LiwNixCoyMn1-x-y-zMzO2) includes: (a) preparing a metal salt aqueous solution including a lithium raw material, a manganese raw material, a nickel raw material, and a cobalt raw material; (b) wet-pulverizing the metal salt aqueous solution using beads having a particle diameter of 0.05 to 0.30 mm at 2000 to 6000 rpm for 2 to 12 hours to prepare a slurry; (c) adding a carbon source to the slurry; (d) spray-drying the slurry of the step (c) to prepare a mixed powder; and (e) heat-treating the mixed powder.
摘要:
The present invention provides a positive active material for a secondary lithium battery, a method of preparing the positive active material, and a secondary lithium battery including the positive active material, wherein the positive active material includes a lithium metal composite oxide core represented by the following Chemical Formula 1, and a coating layer including a fluorine compound and positioned at a shell of the lithium metal composite oxide core. LiwNixCoyMn1-x-y-zMzO2 [Chemical Formula 1] (1.2≦w≦1.5, 0
摘要:
Disclosed are a precursor for a rechargeable lithium battery, a positive active material including the same, a preparation method thereof, and a rechargeable lithium battery including the positive active material. More particularly, the present invention relates to a precursor including a sheet-shaped plate having a thickness of about 1 nm to about 30 nm and that is represented by the following Chemical Formula 1. NixCoyMn1-x-y-zMz(OH)2 [Chemical Formula 1] In the above Chemical Formula 1, 0
摘要翻译:公开了可再充电锂电池的前体,含有它的正极活性材料,其制备方法和包含正极活性物质的可再充电锂电池。 更具体地说,本发明涉及一种前体,其包括厚度为约1nm至约30nm的片状板,并且由以下化学式1表示。€ƒ€ƒ€ƒ€ƒ€ €ƒ€ƒ[化学式1]€ƒ€ƒ€ƒNix Co y Mn 1-xyz M z(OH)2在上述化学式1中,0
摘要:
Disclosed are a precursor of a positive active material for a rechargeable lithium battery and a preparation method thereof, and a positive active material and a rechargeable lithium battery including the same, and specifically a precursor for a rechargeable lithium battery is represented by the following Chemical Formula 1, wherein a manganese ion concentration deviation in the precursor is within 3 wt %. NixCoyMn1−x−y−zMz(OH)2 [Chemical Formula 1] (0
摘要:
A method of preparing a positive active material for a lithium secondary battery represented by the following Chemical Formula 1 (LiwNixCoyMn1-x-y-zMzO2) includes: (a) preparing a metal salt aqueous solution including a lithium raw material, a manganese raw material, a nickel raw material, and a cobalt raw material; (b) wet-pulverizing the metal salt aqueous solution using beads having a particle diameter of 0.05 to 0.30 mm at 2000 to 6000 rpm for 2 to 12 hours to prepare a slurry; (c) adding a carbon source to the slurry; (d) spray-drying the slurry of the step (c) to prepare a mixed powder; and (e) heat-treating the mixed powder.
摘要:
Disclosed are a precursor of a positive active material for a rechargeable lithium battery and a preparation method thereof, and a positive active material and a rechargeable lithium battery including the same, and specifically a precursor for a rechargeable lithium battery is represented by the following Chemical Formula 1, wherein a manganese ion concentration deviation in the precursor is within 3 wt %. NixCoyMn1-x-y-zMz(OH)2 [Chemical Formula 1] (0