Abstract:
The present invention relates to a poly(ethylene-aliphatic diene)-g-polystyrene-based copolymer having an improved mechanical property and heat resistance, and a method for preparing the same. More particularly, the present invention relates to a poly(ethylene-aliphatic diene)-g-polystyrene-based copolymer, which includes an ethylene-aliphatic diene copolymer as a soft segment and a polystyrene-based polymer grafted to the soft segment as a hard segment, and a method for preparing the same. The poly(ethylene-aliphatic diene)-g-polystyrene-based copolymer has elasticity equivalent to that of SBS or SEBS, and improved mechanical properties such as tensile strength and heat resistance, thereby being used as a substituent for SBS or SEBS.
Abstract:
The present invention relates to a highly elastic, ethylene-based quaterpolymer and a preparation method thereof. More particularly, the present invention relates to a highly elastic, ethylene-based quaterpolymer which comprises a specific molar ratio of an ethylene unit, a C4-6 α-olefin unit, a C8-12 α-olefin unit and at least one functional unit derived from a styrene-based monomer and to a method for preparing the ethylene-based quaterpolymer using a metallocene catalyst.
Abstract:
The present invention relates to a composite material for a transport, including a polypropylene resin and a carbon long fiber, and more particularly, to a fiber reinforced composite material composition for a transport including 40-90 wt % of a polypropylene resin, 5-60 wt % of a carbon long fiber having a fiber diameter of 1-50 μm and a weight average fiber length of 20-150 mm, and 0.3-10 wt % of a compatibilizer. The compatibilizer includes one selected from the group consisting of an ionomer, a copolymer of propylene-polar monomer, a modification water added polymer and combinations thereof. The composite material has improved interface properties between the polypropylene resin and the carbon long fiber owing to a specific compatibilizer, improved rigidity, impact resistance and heat resistance, and may be applied to various fields requiring the fiber reinforced composite material as well as various transports including an automobile.
Abstract:
The present invention relates to a highly elastic, ethylene-based quaterpolymer and a preparation method thereof. More particularly, the present invention relates to a highly elastic, ethylene-based quaterpolymer which comprises a specific molar ratio of an ethylene unit, a C4-6 α-olefin unit, a C8-12 α-olefin unit and at least one functional unit derived from a styrene-based monomer and to a method for preparing the ethylene-based quaterpolymer using a metallocene catalyst.