摘要:
Disclosed are a shear thickening fluid (STF) and a polymer composite comprising a core filled with a shear thickening fluid containing silica particles dispersed in polyethylene glycol; an inner capsule layer formed of an emulsifier surrounding the shear thickening fluid; and an outer capsule layer formed of a thermosetting resin surrounding the inner capsule layer.
摘要:
The present invention relates to a method for manufacturing in-situ oriented-fiber composite material, the method simultaneously extruding, using thermoplastic members, matrix ingredients and fiber ingredients, and passing same through a nozzle of a set cross-sectional shape, weight and fill ratio of the fiber ingredient, thereby aligning the fiber ingredients within the matrix in one direction one single continuous step, and thus, by means of the production method, the process is shortened, the thinning of the thickness of the oriented-fiber composite material is attained, and particularly, filling, distribution and reinforcement of the fiber within the matrix can be effectively controlled and a high density of the fiber can be attained. Furthermore, the present invention provides an element exhibiting superbly effective reflective polarization by controlling so that the lengthwise refractive index of the matrix is lower than the lengthwise refractive index of the fiber ingredients in the oriented-fiber composite material, thus the element can replace conventional reflective polarizing light film and can be effectively used as an optical element in other fields.
摘要:
Disclosed are a shear thickening fluid (STF) comprising solid particles and a dispersion medium, wherein the solid particles comprise silica particles as a first component and carbon nanoparticles as a second component and a method for preparing a shear thickening fluid, comprising mixing silica particles, a dispersion medium for silica particles, and a carbon nanoparticle dispersion.
摘要:
The present invention relates to a diffusion sheet, a method for manufacturing the same, and a backlight unit using the same for a liquid crystal display. The diffusion sheet of the present invention is configured to have at least two or more fibrous layers alternately embedded within a matrix, and arranged at the combination of at least two or more angles of 0°, 90° and ±θ between successive layers, each fibrous layer having fibers arranged in parallel to each other in one direction, so that the diffusion sheet promotes two-dimensional diffusion distributions, thus uniformly diffusing the light irrespective of the initial angle and direction, to a method for manufacturing a diffusion sheet wherein a matrix component and a fibrous layer component are simultaneously extruded to allow fibrous layers to be arranged in situ in a matrix, the present invention has the benefit of simultaneously shortening the process and thinning the thickness. Furthermore, by using the diffusion sheet according to the present invention, a liquid crystal display backlight unit having high opacity and improved light diffusion property can be provided.
摘要:
The present invention relates to a medical nonwoven fabric comprising gelable cellulose derivative short-cut fibers as prepared by the paper making process, a preparation method thereof, and an adhesion prevention barrier using the same. The present invention provides a single phase of medical nonwoven fabric comprising gelable cellulose derivative short-cut fibers, to induce capillary action of micropores formed between the fibers and thereby control the gelation time, and provides a composite nonwoven fabric formed by laminating a nonwoven fabric layer comprising a different kind of biodegradable polymer material not susceptible to gelation on the single-phase of medical nonwoven fabric comprising gelable cellulose derivative short-cut fibers, thereby improving dimensional stability and convenience of surgical procedure. The present invention further provides a dyed medical nonwoven fabric to improve visibility, allowing easiness of recognizing the placement or location of the medical nonwoven fabric.
摘要:
The present invention relates to a medical nonwoven fabric comprising gelable cellulose derivative short-cut fibers as prepared by the paper making process, a preparation method thereof, and an adhesion prevention barrier using the same. The present invention provides a single phase of medical nonwoven fabric comprising gelable cellulose derivative short-cut fibers, to induce capillary action of micropores formed between the fibers and thereby control the gelation time, and provides a composite nonwoven fabric formed by laminating a nonwoven fabric layer comprising a different kind of biodegradable polymer material not susceptible to gelation on the single-phase of medical nonwoven fabric comprising gelable cellulose derivative short-cut fibers, thereby improving dimensional stability and convenience of surgical procedure. The present invention further provides a dyed medical nonwoven fabric to improve visibility, allowing easiness of recognizing the placement or location of the medical nonwoven fabric. Further, the single-phase nonwoven fabric or the composite nonwoven fabric, which makes it possible to efficiently control the gelation time by way of capillary action of the micropores formed between the fiber in the nonwoven fabric, can also be used as an adhesion prevention barrier with improved convenience of surgical procedure and post-surgical adhesion, in contrast to the conventional knit or film type adhesion prevention barrier.
摘要:
The present invention relates to a multi-layered composite material manufactured by thermocompressing a multi-layered sheet, comprising: a first sheet layer formed from a solution containing nanofibrillated cellulose and a first thermoplastic matrix polymer; and a second sheet layer formed from a solution containing a second thermoplastic matrix polymer. The multi-layered composite material of the present invention has the high strength and high elastic modulus.
摘要:
The present invention relates to a multi-layered composite material manufactured by thermocompressing a multi-layered sheet, comprising: a first sheet layer formed from a solution containing nanofibrillated cellulose and a first thermoplastic matrix polymer; and a second sheet layer formed from a solution containing a second thermoplastic matrix polymer. The multi-layered composite material of the present invention has the high strength and high elastic modulus.
摘要:
The present invention relates to a method for preparing nanofibrillated cellulose capable of producing high-quality cellulose nanofibrils by a simple process without using the conventional enzymatic treatment, in which a cellulose aqueous dispersion is homogenized by adding an aqueous alkaline solution having a pH between 8 and 14 thereto so that the aqueous alkaline solution aids the swell of an amorphous region of cellulose, thereby promoting the nanofibrillation of cellulose during the homogenizing process.
摘要:
The present invention relates to a composite material for a transport, including a polypropylene resin and a carbon long fiber, and more particularly, to a fiber reinforced composite material composition for a transport including 40-90 wt % of a polypropylene resin, 5-60 wt % of a carbon long fiber having a fiber diameter of 1-50 μm and a weight average fiber length of 20-150 mm, and 0.3-10 wt % of a compatibilizer. The compatibilizer includes one selected from the group consisting of an ionomer, a copolymer of propylene-polar monomer, a modification water added polymer and combinations thereof. The composite material has improved interface properties between the polypropylene resin and the carbon long fiber owing to a specific compatibilizer, improved rigidity, impact resistance and heat resistance, and may be applied to various fields requiring the fiber reinforced composite material as well as various transports including an automobile.