Abstract:
A uniform nanocrystalline diamond thin film with minimized voids is formed on a silicon oxide-coated substrate and a method for fabricating same are disclosed. The nanocrystalline diamond thin film is formed by performing hydrogen plasma treatment, hydrocarbon plasma treatment or hydrocarbon thermal treatment on the substrate surface to maximize electrostatic attraction between the substrate surface and nanodiamond particles during the following ultrasonic seeding such that the nanodiamond particles are uniformly distributed and bound on the silicon oxide on the substrate.
Abstract:
2-dimensional nanostructured tungsten carbide which is obtained by control of the alignment of nanostructure during growth of tungsten carbide through control of the degree of supersaturation and a method for fabricating same are disclosed. The method for fabricating 2-dimensional nanostructured tungsten carbide employs a chemical vapor deposition process wherein a hydrogen plasma is applied to prepare 2-dimensional nanostructured tungsten carbide vertically aligned on a nanocrystalline diamond film. The chemical vapor deposition process wherein the hydrogen plasma is applied includes: disposing a substrate with the nanocrystalline diamond film formed thereon on an anode in a chamber, disposing a surface-carburized tungsten cathode above and at a distance from the substrate, and applying the hydrogen plasma into the chamber.
Abstract:
A method for growing carbon nanoflakes includes inducing partial etching of graphene layers of carbon nanotubes through an adequate composition of precursor gases, CH4, H2 and Ar, while allowing carbon nanoflakes to grow at the etched site in a plane-like shape. A carbon nanoflake structure is formed by the same method. The method for growing carbon nanoflakes includes: providing a silicon substrate having carbon nanotubes; and growing carbon nanoflakes on the carbon nanotubes through a chemical vapor deposition process using a mixed gas of CH4, H2 and Ar as a precursor. During the chemical vapor deposition process, the mixed gas of CH4, H2 and Ar is in an atmosphere with excess Ar, graphene layers forming the carbon nanotubes are etched partially under the atmosphere with excess Ar, and graphene layers of carbon nanoflakes are grown at the etched site.