Abstract:
A method for fabricating a nanoantenna array may include forming a resist layer on a substrate, forming a focusing layer having a dielectric microstructure array on the resist layer, diffusing light one-dimensionally in a specific direction by using a linear diffuser, forming an anisotropic pattern on the resist layer by illuminating the light diffused by the linear diffuser on the focusing layer and the resist layer, depositing a material suitable for a plasmonic resonance onto the substrate and the resist layer on which the pattern is formed, and forming a nanoantenna array on the substrate by removing the resist layer and the material deposited on the resist layer. A light diffusing angle by the linear diffuser and a size of the dielectric microstructure are determined based on an aspect ratio of the pattern to be formed.
Abstract:
A method for manufacturing a cubic boron nitride (c-BN) thin film includes: applying a pulse-type bias voltage to a substrate; and forming the cubic boron nitride thin film by bombarding the substrate with ions using the pulse-type bias voltage. To control the compressive residual stress of the cubic boron nitride thin film, ON/OFF time ratio of the pulse-type bias voltage may be controlled. The compressive residual stress that is applied to the thin film can be minimized by using the pulse-type voltage as a negative bias voltage applied to the substrate. In addition, the deposition of the c-BN thin film can be performed in a low ion energy region by increasing the ion/neutral particle flux ratio through the control of the ON/OFF time ratio of the pulse-type voltage.
Abstract:
A method for manufacturing an electrode for hydrogen production using a tungsten carbide nanoflake may include: forming a tungsten carbide nanoflake on a nanocrystalline diamond film by means of a chemical vapor deposition process in which hydrogen plasma is applied; and increasing activity of the tungsten carbide nanoflake to a hydrogen evolution reaction by removing an oxide layer or a graphene layer from a surface of the tungsten carbide nanoflake. Since an oxide layer and/or a graphene layer of a surface of tungsten carbide is removed by means of cyclic cleaning after tungsten carbide is formed, hydrogen evolution reaction (HER) activity of the tungsten carbide may be increased, thereby enhancing utilization as a catalyst electrode.
Abstract:
Provided are polycrystalline diamond for drawing dies, which inhibits preferential wear along specific lattice planes while ensuring wear resistance by controlling the shape and orientation of the grains forming polycrystalline diamond solid, and a method for fabricating the same. The polycrystalline diamond for drawing dies includes a section of diamond having an isotropic granular structure or a radially oriented texture, or has a stacked structure including an isotropic granular layer and a radial texture layer alternately in multiple layers.
Abstract:
A superhard boron carbide thin film with superior high temperature oxidation resistance has a structure in which a boron carbide layer and a silicon carbide layer are repeatedly stacked in an alternating manner. Accordingly, the high temperature oxidation resistance of the boron carbide thin film is enhanced, allowing the application as coating materials for wear resistant tools such as cutting tools.
Abstract:
A uniform nanocrystalline diamond thin film with minimized voids is formed on a silicon oxide-coated substrate and a method for fabricating same are disclosed. The nanocrystalline diamond thin film is formed by performing hydrogen plasma treatment, hydrocarbon plasma treatment or hydrocarbon thermal treatment on the substrate surface to maximize electrostatic attraction between the substrate surface and nanodiamond particles during the following ultrasonic seeding such that the nanodiamond particles are uniformly distributed and bound on the silicon oxide on the substrate.
Abstract:
A localized surface plasmon resonance sensor may include a localized surface plasmon excitation layer including a chalcogenide material. The chalcogenide material may include: a first material including at least one of selenium (Se) and tellurium (Te); and a second material including at least one of germanium (Ge) and antimony (Sb). The localized surface plasmon excitation layer may be prepared by forming a thin film including the chalcogenide material and crystallizing the thin film to have a predetermined pattern by irradiating laser on the thin film.
Abstract:
A plasmonic nano-color coating layer includes a composite layer including a plurality of metal particle layers and a plurality of matrix layers and having a periodic multilayer structure in which the metal particle layers and the matrix layers are alternately arranged, a dielectric buffer layer located below the composite layer, and a mirror layer located below the dielectric buffer layer, wherein the color of the plasmonic nano-color coating layer is determined based on a nominal thickness of the metal particle layer and a separation between the metal particle layers.
Abstract:
Provided are a method and an apparatus for rapid growth of a diamond capable of synthesizing a diamond having a large area and increasing a rate of synthesis of the diamond. The method for rapid growth of a diamond according to the present disclosure using a hot filament chemical vapor deposition (HFCVD) method includes: controlling a concentration of atomic hydrogen by controlling a flow rate of a precursor gas including hydrogen and hydrocarbon; and providing a solid phase carbon source which is etched by atomic hydrogen to increase a degree of supersaturation of a carbon source in a chamber of an HFCVD apparatus.
Abstract:
2-dimensional nanostructured tungsten carbide which is obtained by control of the alignment of nanostructure during growth of tungsten carbide through control of the degree of supersaturation and a method for fabricating same are disclosed. The method for fabricating 2-dimensional nanostructured tungsten carbide employs a chemical vapor deposition process wherein a hydrogen plasma is applied to prepare 2-dimensional nanostructured tungsten carbide vertically aligned on a nanocrystalline diamond film. The chemical vapor deposition process wherein the hydrogen plasma is applied includes: disposing a substrate with the nanocrystalline diamond film formed thereon on an anode in a chamber, disposing a surface-carburized tungsten cathode above and at a distance from the substrate, and applying the hydrogen plasma into the chamber.