Abstract:
Functionalized metal oxide nanoparticles which are lithium-terminated sulfonated metal oxide nanoparticles. According to the anode to which lithium-terminated sulfonated metal oxide nanoparticles are introduced as a protective layer, negatively charged sulfonate groups may cause electrostatic repulsion of lithium polysulfides and limit access of lithium polysulfides to a lithium metal anode while reducing the interfacial resistance by lithium fixed to sulfonate groups, inhibit growth of dendrites at a lithium metal anode and perforation of a separator, and the protective layer serves as an artificial solid electrolyte interphase (SEI) layer positioned on the surface of lithium metal and reducing the impedance to charge transfer reaction, thereby increasing the Coulomb efficiency of a lithium-sulfur battery. Thus, it is possible to improve the electrochemical characteristics, such as charge/discharge capacity, life and rate characteristics.
Abstract:
Provided is a lithium metal anode comprising a Langmuir-Blodgett films as an artificial solid electrolyte interface layer, a lithium metal battery comprising the same, and a preparation method thereof. Various ultra-thin film layers made of carbon and ceramic are formed on the surface of the LiM to serve as a stable artificial SEI layer and suppress formation and perforation of lithium dendrite and side reactions.
Abstract:
Disclosed are a modified catalyst for converting ortho-hydrogen to para-hydrogen, in which a metal active material capable of converting ortho-hydrogen to para-hydrogen is coated on a surface of a porous support, a method for preparing the same, and an apparatus and a method for converting ortho-hydrogen to para-hydrogen in hydrogen gas using the same. Accordingly, a pressure drop may be prevented and impurities in hydrogen gas may also be simultaneously removed when ortho-hydrogen is converted to para-hydrogen, and a stable reaction operation may be enabled.
Abstract:
Disclosed are a method and an apparatus for preparing an alkylene carbonate using a polyamine-based heterogeneous catalyst. The rapid increase in reactor temperature and the risk of explosion due to heat of reaction may be prevented by recycling the produced alkylene carbonate to the reactor. Accordingly, it is possible to obtain the alkylene carbonate stably and continuously with high yield while maintaining reaction temperature and pressure constant.
Abstract:
Disclosed are a carbon dioxide absorbent composition in which an N-alkylaminoalkanol; a polyhydroxyamine-based compound; and ethylenediamine and/or diethylenetriamine are mixed, a method for preparing the same, and a method and an apparatus for carbon dioxide absorption/separation using the same. Since the carbon dioxide absorbent according to the present disclosure has superior carbon dioxide absorption capacity and remarkably lower absorbent recycling temperature as compared to the existing absorbents such as monoethanolamine, etc., total energy consumption in the capturing process can be reduced greatly. In addition, since carbon dioxide is recovered at low recycling temperature, contamination by water or absorbent vapor may be prevented.
Abstract:
The artificial solid electrolyte interphase of an anode for a secondary battery including multi-walled carbon nanotubes to protect an underlying anode material in the form of a thin film. The use of the artificial solid electrolyte interphase enables rapid diffusion and stable deposition of lithium to inhibit the formation of dendrites. In addition, the artificial solid electrolyte interphase prevents side reactions between the lithium metal anode and the electrolyte, achieving good electrochemical stability and high Coulombic efficiency.