Abstract:
The present invention relates to a catalyst in which a catalytic metal is supported on a support including a single-crystalline hexagonal material, and a preparation method therefor, wherein the catalyst can be effectively used in ammonia dehydrogenation or ammonia synthesis.
Abstract:
Provided are a ceria-based composition including ceria or metal-doped ceria, lithium salt, and optionally, bismuth oxide, ceria-based composite electrolyte powder, and a sintering method and sintered body using the same. Particularly, the lithium salt is present in an amount more than 0 wt % and equal to or less than 5 wt %, and bismuth oxide is present in an amount more than 0 wt % and equal to or less than 10 wt %. It is possible to reduce sintering temperature by adding a low-melting point and/or volatile compound to a ceria-based material. In this manner, it is possible to ensure a high composite sintering density, for example, of 95% or more even at a temperature, for example, of 1000° C. or lower, which is significantly lower than the conventional sintering temperature of 1500° C. in the case of a ceria-based material alone.
Abstract:
The present invention relates to a hydrogen production reactor comprising a high-efficiency composite having a high thermal conductivity and an antioxidant property. Specifically, the hydrogen production reactor comprises: a first region in which a combustion reaction of fuel occurs; a second region in which a hydrogen extraction reaction occurs; a metal substrate that partitions the first region and the second region; and a coating layer that comprises boron nitride (BN) and is formed on at least one surface of the metal substrate, wherein heat generated in the first region is transferred to the second region through the metal substrate.