Abstract:
Functionalized metal oxide nanoparticles which are lithium-terminated sulfonated metal oxide nanoparticles. According to the anode to which lithium-terminated sulfonated metal oxide nanoparticles are introduced as a protective layer, negatively charged sulfonate groups may cause electrostatic repulsion of lithium polysulfides and limit access of lithium polysulfides to a lithium metal anode while reducing the interfacial resistance by lithium fixed to sulfonate groups, inhibit growth of dendrites at a lithium metal anode and perforation of a separator, and the protective layer serves as an artificial solid electrolyte interphase (SEI) layer positioned on the surface of lithium metal and reducing the impedance to charge transfer reaction, thereby increasing the Coulomb efficiency of a lithium-sulfur battery. Thus, it is possible to improve the electrochemical characteristics, such as charge/discharge capacity, life and rate characteristics.
Abstract:
Disclosed herein is an apparatus for precooling and purifying hydrogen including a body which includes a first chamber and a second chamber disposed in the first chamber with the second chamber being filled with a liquid cooling medium, a first cyclone chamber disposed in the second chamber and connected to a hydrogen supply pipe on an upper of one side thereof to allow the hydrogen which flows therein to move downward rotating to perform thermal exchange with the cooling medium and separation of impurities therefrom, a first hydrogen discharge pipe to allow hydrogen to flow from the first cyclone chamber to the outside, and an ortho-para hydrogen converting catalyst disposed on a path through which hydrogen which flows in the first hydrogen discharge pipe moves to allow ortho-para hydrogen conversion to be performed.
Abstract:
Disclosed are a modified catalyst for converting ortho-hydrogen to para-hydrogen, in which a metal active material capable of converting ortho-hydrogen to para-hydrogen is coated on a surface of a porous support, a method for preparing the same, and an apparatus and a method for converting ortho-hydrogen to para-hydrogen in hydrogen gas using the same. Accordingly, a pressure drop may be prevented and impurities in hydrogen gas may also be simultaneously removed when ortho-hydrogen is converted to para-hydrogen, and a stable reaction operation may be enabled.
Abstract:
Provided is a low heat loss cryogenic liquid container, which includes: an outer container, to an upper end of which an upper end cover is coupled and an interior of which is maintained in a vacuum; an inner container that is disposed inside the outer container apart from an inner wall of the outer container and contains a cryogenic liquid; a liquid inflow/outflow pipe that connects an exterior of the outer container and an interior of the inner container and serves as a passage for charging and/or discharging the cryogenic liquid; and a support including a strut member that is disposed between an inner lower surface of the outer container and an outer lower surface of the inner container and is formed of a low heat conductivity material to interrupt heat conduction, and springs disposed at least one position between an upper end of the strut member and the outer lower surface of the inner container, between a lower end of the strut member and the inner lower surface of the outer container, and between both of the ends of the strut member.
Abstract:
Disclosed are a method and an apparatus for preparing an alkylene carbonate using a polyamine-based heterogeneous catalyst. The rapid increase in reactor temperature and the risk of explosion due to heat of reaction may be prevented by recycling the produced alkylene carbonate to the reactor. Accordingly, it is possible to obtain the alkylene carbonate stably and continuously with high yield while maintaining reaction temperature and pressure constant.
Abstract:
Disclosed are a carbon dioxide absorbent composition in which an N-alkylaminoalkanol; a polyhydroxyamine-based compound; and ethylenediamine and/or diethylenetriamine are mixed, a method for preparing the same, and a method and an apparatus for carbon dioxide absorption/separation using the same. Since the carbon dioxide absorbent according to the present disclosure has superior carbon dioxide absorption capacity and remarkably lower absorbent recycling temperature as compared to the existing absorbents such as monoethanolamine, etc., total energy consumption in the capturing process can be reduced greatly. In addition, since carbon dioxide is recovered at low recycling temperature, contamination by water or absorbent vapor may be prevented.
Abstract:
The artificial solid electrolyte interphase of an anode for a secondary battery including multi-walled carbon nanotubes to protect an underlying anode material in the form of a thin film. The use of the artificial solid electrolyte interphase enables rapid diffusion and stable deposition of lithium to inhibit the formation of dendrites. In addition, the artificial solid electrolyte interphase prevents side reactions between the lithium metal anode and the electrolyte, achieving good electrochemical stability and high Coulombic efficiency.
Abstract:
Provided are a ceria-based composition including ceria or metal-doped ceria, lithium salt, and optionally, bismuth oxide, ceria-based composite electrolyte powder, and a sintering method and sintered body using the same. Particularly, the lithium salt is present in an amount more than 0 wt % and equal to or less than 5 wt %, and bismuth oxide is present in an amount more than 0 wt % and equal to or less than 10 wt %. It is possible to reduce sintering temperature by adding a low-melting point and/or volatile compound to a ceria-based material. In this manner, it is possible to ensure a high composite sintering density, for example, of 95% or more even at a temperature, for example, of 1000° C. or lower, which is significantly lower than the conventional sintering temperature of 1500° C. in the case of a ceria-based material alone.