Abstract:
Provided is a method for deoxygenating an oxygenated hydrocarbon compound using a hydrogenation catalyst of immersing a metal in a carrier comprising a metal oxide and a hydrodeoxygenation catalyst of immersing a metal in a carrier comprising a metal oxide. It is possible to increase deoxygenation efficiency by combining the hydrogenation catalyst and the hydrodeoxygenation catalyst.
Abstract:
Disclosed are a heteropolyacid catalyst for producing gamma-valerolactone, which is supported on M-Beta zeolite (M=Sn, Ti, Zr or Hf), and a method for preparing the same and a method for manufacturing gamma-valerolactone using the catalyst. The catalyst has an effect of producing gamma-valerolactone from biomass-derived furfural at a high yield through a one-pot process.
Abstract:
Disclosed is a zinc-imidazole complex mixed catalyst. Also disclosed are a method for preparing the zinc-imidazole complex mixed catalyst and a method for producing a methyl N-phenyl carbamate in high yield with high selectivity in the presence of the catalyst. The zinc-imidazole complex mixed catalyst can be reused due to its high reaction stability. In addition, the use of the zinc-imidazole complex mixed catalyst leads to a marked improvement in the production yield of a methyl N-phenyl carbamate with high selectivity.
Abstract:
Disclosed herein are a calcium salts-supported metal catalyst, a method for preparing the same, and a method for the hydrodeoxygenation reaction of oxygenates using the same. The catalyst, in which a metal catalyst is supported on a carrier of a calcium salt, for example, calcium carbonate, has the effect of increasing the efficiency of hydrodeoxygenation reaction of oxygenates.
Abstract:
Disclosed herein are a calcium salts-supported metal catalyst, a method for preparing the same, and a method for the hydrodeoxygenation reaction of oxygenates using the same. The catalyst, in which a metal catalyst is supported on a carrier of a calcium salt, for example, calcium carbonate, has the effect of increasing the efficiency of hydrodeoxygenation reaction of oxygenates.
Abstract:
Disclosed is a zinc-imidazole complex mixed catalyst. Also disclosed are a method for preparing the zinc-imidazole complex mixed catalyst and a method for producing a methyl N-phenyl carbamate in high yield with high selectivity in the presence of the catalyst. The zinc-imidazole complex mixed catalyst can be reused due to its high reaction stability. In addition, the use of the zinc-imidazole complex mixed catalyst leads to a marked improvement in the production yield of a methyl N-phenyl carbamate with high selectivity.
Abstract:
Disclosed is a method for producing glycidol by successive catalytic reactions. The method includes a series of reactions for the preparation of glycerol carbonate from glycerol and the decarboxylation of the glycerol carbonate. Specifically, the method includes i) reacting glycerol with a dialkyl carbonate to prepare glycerol carbonate, and ii) subjecting the glycerol carbonate to decarboxylation wherein a base is added as a catalyst in step i) and is allowed to react with an acid to form a metal salt after step i), and the salt is used as a catalyst in step ii). According to the method, inexpensive and easy-to-purchase acid and base catalysts can be used to produce glycidol from glycerol, a by-product of biodiesel production, as a starting material in high yield with high selectivity in a convenient, simple, and environmentally friendly way. In addition, the method eliminates the need to separate the base catalyst.