Abstract:
Disclosed is a thermoelectric composite material includes a thermoelectric material including crystal grains; and a MXene inserted at boundaries of the crystal grains consisting of the thermoelectric material. Accordingly, the thermoelectric composite material may have a reduced thermal conductivity and an increased electrical conductivity. Furthermore, mechanical properties of the thermoelectric composite material may be improved. Thus, the thermoelectric composite material may improve the thermoelectric ability of a thermoelectric module including the same. A method of manufacturing the thermoelectric composite material includes coating MXene on a surface of a thermoelectric material powder including crystal grains; and sintering the thermoelectric material powder coated with the MXene to form a sintered body including the MXene inserted at boundaries of the crystal grains consisting of the thermoelectric material.
Abstract:
The present invention relates to a coating composition having excellent wavelength conversion efficiency and a wavelength converting thin film/sheet prepared using the same. The coating composition of the present disclosure includes 1 to 60 wt % of polyorgano-silsesquioxane, 0.0001 to 30.0 wt % of a wavelength converting agent, and a solvent, and exhibits a transmittance of 70% or more as compared to that of an aqueous solution. A wavelength converting thin film/sheet prepared by using the coating composition has not only excellent photoluminescence, thermal resistance, and light-fastness, but also moisture and oxygen permeability is low, and the visible light transmittance thereof is 70% or more as compared to that of the air, and when patterning is added, the photoluminescence intensity of sheet is at least two-fold higher than that of a non-patterned sheet. Therefore, the coating composition of the present invention may be conveniently used in the preparation of a wavelength converting thin film/sheet, and feasibly applied to the preparation of a solar cell in an efficient manner.