Abstract:
Disclosed is a transparent anode thin film comprising a transparent anode active material layer, wherein the transparent anode active material layer comprises a Si-based anode active material having a composition represented by the following [Chemical Formula 1]:
Abstract:
Disclosed is a thermoelectric composite material includes a thermoelectric material including crystal grains; and a MXene inserted at boundaries of the crystal grains consisting of the thermoelectric material. Accordingly, the thermoelectric composite material may have a reduced thermal conductivity and an increased electrical conductivity. Furthermore, mechanical properties of the thermoelectric composite material may be improved. Thus, the thermoelectric composite material may improve the thermoelectric ability of a thermoelectric module including the same. A method of manufacturing the thermoelectric composite material includes coating MXene on a surface of a thermoelectric material powder including crystal grains; and sintering the thermoelectric material powder coated with the MXene to form a sintered body including the MXene inserted at boundaries of the crystal grains consisting of the thermoelectric material.
Abstract:
A method for manufacturing a thermoelectric material is provided. According to the method, a first shaped body is formed from a thermoelectric powder, of which a crystal has a layer structure. An extruded body is formed by extruding the first shaped body. A plurality of cut-off pieces are formed by cutting the extruded body along a cross-section perpendicular to an extrusion direction. A second shaped body is formed by stacking and pressing the cut-off pieces along a direction perpendicular to the extrusion direction. According to the above, a thermoelectric ability of a thermoelectric material and an efficiency for manufacturing a thermoelectric module may be improved.
Abstract:
Proposed is a self-resonance tuning piezoelectric energy harvester with broadband frequency, including: a piezoelectric beam which is extended along a horizontal direction; a fixing member which fixes opposite ends of the piezoelectric beam; and a mobile mass which the piezoelectric beam passes through, and which is capable of self-movement along the piezoelectric beam through a through-hole which has a free space in addition to a space which the piezoelectric beam passes through, wherein as the mobile mass moves to a position of the piezoelectric beam, generated displacement of a piezoelectric beam is increased, and as the generated displacement becomes greater than the free space, the mobile mass is fixed to a position of a piezoelectric beam at which resonance will occur.
Abstract:
Disclosed is a curved piezoelectric device maximizing an electrical potential of the piezoelectric material corresponding to an external mechanical stress. The curved piezoelectric device includes: a curved substrate; and a piezoelectric material provided on one surface or both surfaces of the curved substrate, wherein when a stress is applied, a neutral plane in which a compressive stress and a tensile stress are balanced is located in the curved substrate, wherein the location of the neutral plane is determined by y1 and y2 of Equation 1 or 2 below, and wherein the location of the neutral plane is controllable by adjusting a thickness (d), a sectional area (A) and a Young's modulus (E) of each of the curved substrate and the piezoelectric material: wherein y 1 = E 2 d 2 ( d 1 + d 2 ) 2 ( E 1 d 1 + E 2 d 2 ) , y 2 = E 1 d 1 ( d 1 + d 2 ) 2 ( E 1 d 1 + E 2 d 2 ) and Equation 1 y 1 = E 2 A 2 ( A 1 + A 2 ) 2 ( E 1 A 1 + E 2 A 2 ) , y 2 = E 1 A 1 ( A 1 + A 2 ) 2 ( E 1 A 1 + E 2 A 2 ) . Equation 2
Abstract:
A method for manufacturing a thermoelectric material is provided. According to the method, a first shaped body is formed from a thermoelectric powder, of which a crystal has a layer structure. An extruded body is formed by extruding the first shaped body. A plurality of cut-off pieces are formed by cutting the extruded body along a cross-section perpendicular to an extrusion direction. A second shaped body is formed by stacking and pressing the cut-off pieces along a direction perpendicular to the extrusion direction. According to the above, a thermoelectric ability of a thermoelectric material and an efficiency for manufacturing a thermoelectric module may be improved
Abstract:
Disclosed is a manganese tin oxide-based transparent conducting oxide (TCO) with an optimized composition, which has low surface roughness, low sheet resistance and high transmittance even when deposited at room temperature, a multilayer transparent conductive film using the same and a method for fabricating the same. The manganese tin oxide-based transparent conducting oxide has a composition of MnxSn1-xO (0
Abstract:
The present disclosure relates to a paste for ohmic contact to p-type semiconductor, including a metal oxide and a binder, wherein the metal oxide is a rhenium oxide or a molybdenum oxide.
Abstract:
A cathode thin film for a lithium secondary cell, which uses a cathode active material substituting Sn for Mn in lithium manganese oxide, has a high discharge capacity and an improved cycle property.
Abstract:
Disclosed herein is a smart wearable lens mounted with an all-solid-state thin film secondary battery including a flexible substrate, a cathode current collector, a cathode, a solid electrolyte, an anode, and an anode current collector. The smart wearable lens mounted with the all-solid-state thin film secondary battery may be stably and continuously supplied with power and has a low self-discharge rate. In addition, the smart wearable lens may minimize aversion when humans are wearing the smart wearable lens and be suitably used for a curved lens, especially a micro-lens such as a contact lens.