Abstract:
Metal nanowires with high linearity can be produced using metal salts at a relatively low temperature. A transparent conductive film can be formed using the metal nanowires. Particularly, the transparent conductive film has high transmittance, low sheet resistance, and good thermal, chemical and mechanical stability. The transparent conductive film has a high electrical conductivity due to the high linearity of the metal nanowires. The metal nanowires take up 5% or less of the volume of the transparent conductive film, ensuring high transmittance of the transparent conductive film. Furthermore, the metal nanowires are useful as replacements for existing conductive materials, such as ITO, conductive polymers, carbon nanotubes and graphene. The metal nanowires can be applied to flexible substrates and other various substrates due to their good adhesion and high applicability to the substrates. Moreover, the metal nanowires can find application in various fields, such as displays and solar cell devices.
Abstract:
The present invention relates to oxidation resistant copper nanoparticles, and to a method for producing the same, which includes the steps of: preparing a first solution composed of a solvent, a polymer, and an organic acid; stirring the first solution to produce a first stirred solution; mixing the first stirred solution, a copper precursor, and a first reducing agent to produce a second reactant solution; mixing a second reducing agent with the second reactant solution to produce a third reactant solution; and collecting copper nanoparticles separated from the third reactant solution, which is a very simple process performing the reactions at a normal temperature under atmospheric conditions to produce copper nanoparticles, and an eco-friendly method firstly applying a watery solvent so as to achieve mass production of copper nanoparticles only by mixing solutions. In particular, the copper nanoparticles according to the present invention may have excellent oxidation resistant properties to prevent them from being oxidized for three months or more even when preserved at a normal temperature under atmospheric conditions.
Abstract:
A p-type transparent oxide semiconductor includes tin oxide compounds represented by below chemical formula 1: Sn1-xMxO2 [Chemical Formula 1] wherein, in the chemical formula 1, the M is tri-valent metal and the X is a real number of 0.01˜0.05. The p-type transparent oxide semiconductor is applicable to active semiconductor devices such as TFT-LCD and transparent solar cell, due to excellent electrical and optical properties and shows superior properties in aspects of visible light transmittance (T), carrier mobility (μ) and rectification ratio as well as transparency.