Abstract:
The image processing apparatus includes a boundary line extraction means that extracts a boundary line of a layer from an input image obtained by capturing an image of a target object composed of a plurality of layers. The boundary line extraction means is configured to first extract boundary lines at upper and lower ends of the target object, limit a search range using the extracted boundary lines at the upper and lower ends to extract another boundary line, limit the search range using an extraction result of the other boundary line to extract still another boundary line, and then sequentially repeat similar processes to extract subsequent boundary lines. In another aspect, the image processing apparatus includes a boundary line extraction means that extracts a boundary line of a layer from an input image obtained by capturing an image of a target object composed of a plurality of layers and a search range setting means that utilizes an already extracted boundary line extracted by the boundary line extraction means to dynamically set a search range for another boundary line. According to such an image processing apparatus and image processing method, boundary lines of layers can be extracted with a high degree of accuracy from a captured image of a target object composed of a plurality of layers.
Abstract:
Edges of layers are detected from an input image to create a boundary line candidate image that represents the detected edges. A luminance value of the input image is differentiated to create a luminance value-differentiated image that represents luminance gradient of the layers. An evaluation score image is created which is obtained by weighting calculation at an optimum ratio between a boundary line position probability image and the luminance value-differentiated image. The boundary line position probability image is obtained from the boundary line candidate image and an existence probability image that represents existence of a boundary line to be extracted. A route having the highest total evaluation score is extracted as the boundary line. According to such an image processing apparatus and image processing method, boundary lines of layers can be extracted with a high degree of accuracy from a captured image of a target object composed of a plurality of layers.
Abstract:
An identification device includes an acquirer for acquiring a captured image obtained by imaging a predetermined target, a specifier for specifying a linear region extending in a plurality of mutually different directions, from a region of the captured image acquired by the acquirer, the region including the predetermined target, and an extractor for extracting a feature quantity based on the pixel value, from the linear region specified by the specifier.
Abstract:
The present invention improves the recognition rate of an augmented reality marker and the processing speed thereof, simultaneously. In the present invention, a CPU binarizes actual image captured in an image sensor in accordance with an adaptive thresholding, and detects an augmented reality marker from within the binarized image. Then, the CPU determines a binarization threshold based on the augmented reality marker, and after binarizing the actual image captured in the image sensor in accordance with a fixed threshold binarization method using the binarization threshold, recognizes the augmented reality marker based on the binarized image.
an inputter for allowing a user to input a query image to initiate a diagnostic process, a processor configured to input the query image into a disease identifier for generating a plurality of indexes, acquire a malignant index of the plurality of indexes representing a possibility that an attribute of a disease of a diagnosis target area is malignant and a first disease attribute index of the plurality of indexes representing a possibility that an attribute of the disease of the diagnosis target area is a prescribed first disease attribute, and cause the acquired malignant index and the acquired first disease attribute index to be displayed in association with each other on a display.
Abstract:
A bioinformation acquiring apparatus includes at least one processor and a memory configured to store a program to be executed in the processor. The processor acquires a waveform signal representing vibrations of a target, the vibrations resulting from heartbeats of the target; extracts provisional heartbeat timings from the acquired waveform signal based on a first time window; the provisional heartbeat timings indicating provisional values of heartbeat timings being timings at which the heartbeats of the target occur; acquires corrective peak timings from the acquired waveform signal based on a second time window having a shorter time length than the first time window, each of the corrective peak timings serving as a discrete correction unit for correction of the provisional heartbeat timings; corrects the extracted provisional heartbeat timings into definitive heartbeat timings based on the acquired corrective peak timings; and acquires bioinformation on the heartbeats of the target based on the corrected heartbeat timings.
Abstract:
A diagnostic apparatus for diagnosing a disease using a captured image of an affected area includes an image-memorizing unit configured to memorize the captured image and a processing unit configured to process the captured image memorized in the image-memorizing unit. The processing unit includes a separating unit configured to separate the captured image into a brightness component and a color information component, an extracting unit configured to extract a region to be diagnosed based on the brightness component or the color information component of the captured image to highlight likeness of the region, and a highlighting unit configured to highlight the extracted region in accordance with the extracted likelihood V representing the likeness of the region.
Abstract:
The invention provides a method of processing an image in a diagnostic apparatus 100 of diagnosing a disease using a captured image of an affected area, comprising: a memorizing step of memorizing the captured image (Step S12), and a processing step of processing the captured image memorized (Step S13), wherein in the processing step a region to be diagnosed is subjected to a highlighting process with a specified color thereof maintained.
Abstract:
An image processing apparatus of the present invention acquires a photographed image of an object on which indicators have been arranged, detects the indicators from the photographed image with use of a comparison reference image for pattern matching prepared in advance, and instructs to perform predetermined processing based on the detected indicators. The indicators each have a pattern where influence of geometrical image distortion generated corresponding to a photographing distance or a photographing angle with respect to the object is restrained by a central portion of the photographed image, and the comparison reference image is a partial image corresponding to a central portion of the indicator. The indicators are detected from the photographed image by comparing the comparison reference image with the acquired photographed image.
Abstract:
A bioinformation acquiring apparatus includes at least one processor; and a memory configured to store a program to be executed in the processor. The processor acquires bioinformation in a chronological order; derives outlier level parameters, the outlier level parameter indicating a level of inclusion of outliers of the bioinformation in pieces of bioinformation acquired within a first duration; derives correction terms based on the bioinformation after removal of the outliers of the bioinformation from pieces of bioinformation acquired within a second duration that is longer than the first duration; selects one or both of a first correction procedure and a second correction procedure based on the outlier level parameters, as a correction procedure, the first correction procedure using the correction terms, the second correction procedure involving interpolation irrelevant to the correction terms; and corrects the outliers of the bioinformation within the first duration by the selected correction procedure.