Abstract:
A driving device of a gate driver in a flat panel display for reducing production cost includes a plurality of addressing units, each addressing unit for generating a plurality of addressing signals, and an output control circuit for performing logic operations in order on a plurality of addressing signals generated by one of the plurality of addressing units and a plurality of addressing signals generated by another of the plurality of addressing units, for generating a plurality of channel output signals.
Abstract:
A data driving circuit for a low color wash-out liquid crystal display includes a serial-to-parallel conversion module for converting to output a plurality of sequentially received pixel data in parallel, a compensation data generation module for performing a function operation for the plurality of pixel data to generate a plurality of gamma compensation data, a digital-to-analog conversion module for performing digital-to-analog conversion for the plurality of pixel data and the plurality of gamma compensation data according to a gamma look-up table, and an operational amplifier module for generating a plurality of driving voltages of major pixels and a plurality of driving voltages of sub pixels according to analog signals outputted by the digital-to-analog conversion module to drive the major pixels and the sub pixels corresponding to a row of the liquid crystal display.
Abstract:
A driving device of a liquid crystal display (LCD) utilized for preventing noises of a clock signal from causing error operation of a shift register is disclosed. The driving device includes a shift register, a reception terminal, a noise elimination circuit and a control signal generation circuit. The reception terminal is utilized for receiving a first clock signal. The noise elimination circuit is coupled to the reception terminal, and is utilized for eliminating noises of the first clock signal and delaying the first clock signal for a preset time to generate a second clock signal. The control signal generation circuit is coupled to the reception terminal, the noise elimination circuit and the shift register, and is utilized for generating a first control signal and a second control signal to control the shift register.
Abstract:
A voltage comparator includes an input portion, an output portion, and a diverting portion. The input portion accepts a first voltage and a second voltage and then outputs a first current based on the first voltage and outputs a second current based on the second voltage. The output portion outputs a result signal based on a difference between the first current and the second current. The diverting portion is electrically connected to the input portion and diverts a portion of the higher current amongst the first current and the second current.
Abstract:
A driving device of a liquid crystal display (LCD) utilized for preventing noises of a clock signal from causing error operation of a shift register is disclosed. The driving device includes a shift register, a reception terminal, a noise elimination circuit and a control signal generation circuit. The reception terminal is utilized for receiving a first clock signal. The noise elimination circuit is coupled to the reception terminal, and is utilized for eliminating noises of the first clock signal and delaying the first clock signal for a preset time to generate a second clock signal. The control signal generation circuit is coupled to the reception terminal, the noise elimination circuit and the shift register, and is utilized for generating a first control signal and a second control signal to control the shift register.