摘要:
There is provided Lithium-manganese oxides expressed as the following chemical formula 1, Li1+xMn1−x−yMyO2+z, [Chemical Formula 1] wherein 0.01≦x≦0.5, 0≦y≦0.3, −0.2≦z≦0.2, and M is a metal selected from the group consisting of Ti, Mn, V, Cr, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, W, Ag, Sn, Ge, Si, Al, and alloy thereof.
摘要:
The present invention relates to a lithium recovery device comprising a separator reservoir and manganese oxide, a lithium recovery method using the same, and a lithium adsorption/desorption system. The separator reservoir includes a vacant space therein and an outer wall made of a polymer or a membrane of other useful materials. The manganese oxide is contained, as an adsorbent, in the vacant space inside the separator reservoir. The lithium adsorption/desorption system enables lithium recovery through adsorption and desorption of lithium dissolved in seawater using a lithium adsorbent prepared with the manganese oxide in one system, wherein the manganese oxide can be used as a lithium adsorbent with high lithium selectivity. The invention uses a separator reservoir including an outer wall made of a porous polymer or a membrane of other useful materials. As a result, the invention can be directly applied to seawater by enabling free movement of the solution, especially seawater, without additional pressure from the outside. The invention ensures strong stability in seawater and the acidic solution using a polymer with high chemical resistance and mechanical strength, or other useful materials. Therefore, the invention can be widely used in technical fields requiring lithium recovery.
摘要:
The present invention relates to a lithium recovery device comprising a separator reservoir and manganese oxide, a lithium recovery method using the same, and a lithium adsorption/desorption system. The separator reservoir includes a vacant space therein and an outer wall made of a polymer or a membrane of other useful materials. The manganese oxide is contained, as an adsorbent, in the vacant space inside the separator reservoir. The lithium adsorption/desorption system enables lithium recovery through adsorption and desorption of lithium dissolved in seawater using a lithium adsorbent prepared with the manganese oxide in one system, wherein the manganese oxide can be used as a lithium adsorbent with high lithium selectivity. The invention uses a separator reservoir including an outer wall made of a porous polymer or a membrane of other useful materials. As a result, the invention can be directly applied to seawater by enabling free movement of the solution, especially seawater, without additional pressure from the outside. The invention ensures strong stability in seawater and the acidic solution using a polymer with high chemical resistance and mechanical strength, or other useful materials. Therefore, the invention can be widely used in technical fields requiring lithium recovery.
摘要:
The present invention relates to a precious metal leaching method by electrogenerated chlorine and its apparatus, more precisely, the electroleaching apparatus is composed of two reaction chambers at both sides (right and left) which is divided by central separation membrane; one of the reaction chamber is leaching chamber equipped with chlorine leaching-stable electrode for the electrogeneration of chlorine and stirrer for solution stirring and the other reaction chamber is reduction chamber equipped with electrode used for electrolytic recovery of some parts or entire compounds of leached precious metal, and the apparatus can additionally include separator/purifier for quick recovery of targeted precious metal, if necessary. The present invention provides a very simple leaching method and an apparatus thereof which has high leaching efficiency and enables the recovery of leached precious metal.
摘要:
An electrowinning apparatus and method are provided. The electrowinning apparatus includes: an electrolytic cell including a body portion which has an inlet for introducing an aqueous solution containing metal ions into the body portion and a conical portion which is gradually reduced in diameter from top to bottom and disposed under the body portion; a ring-shaped cathode coupled to an inner circumferential surface of the body portion of the electrolytic cell and having an entrance hole which extends from an outer circumferential surface of the cathode through to an inner circumferential surface of the cathode and is connected to the inlet of the electrolytic cell; and a hollow anode having an upper end disposed outside the electrolytic cell and inserted into the cathode. In the electrowinning method, a metal can be recovered from an aqueous solution containing a low concentration of metal ions using the above cyclone-shaped electrowinning apparatus.
摘要:
A method for manufacturing alloy nanopowders is disclosed, which comprises a step in which a wire manufactured in such a manner that at least one hetero metal is coated on a metallic wire is used to manufacture alloy nanopowders. At least one hetero metal is coated on a pure metal wire or an alloy wire based on an electroplating method, an electroless plating or other methods. The alloy wire is electrically exploded for thereby manufacturing at least two-component alloy nanopowder.
摘要:
A system module including a case constituting a body of the one system module; power pins and signal pins disposed adjacent to three edges on a surface of the case in a manner such that substantially a U-shaped arrangement is obtained; a power board located inside the case and electrically connected with the power pins; and a signal board located inside the case and electrically connected with the signal pins. At least two corner portions among four corner portions of the case, which two corner portions are opposite to each other in a diagonal direction, are defined with engaging holes, respectively, through which the case and a heat sink are coupled with each other. Connecting pins and inserting holes through which the connecting pins are inserted, respectively, are complementarily formed and defined on and in the power board and the signal board, so as to electrically connect the power board and the signal board with each other.
摘要:
The present disclosure provides an apparatus and a method for recovery of valuable metals. The apparatus includes an electrolytic chlorine producing bath, a dissolution bath disposed at a rear side of the electrolytic chlorine producing bath to perform leaching of a valuable metal content, a gas supplier connected to the dissolution bath to supply a carrier gas, a collection bath disposed at the rear side of the dissolution bath to collect a volatile material, a separation bath separating and purifying a leaching reactant generated in the dissolution bath, and chlorine and sodium hydroxide recirculation lines connecting the electrolytic chlorine producing bath, the dissolution bath and the separation bath. The apparatus permits recovery of valuable metals according to characteristics of the valuable metal, and the chlorine and sodium hydroxide recirculation lines of the apparatus provides optimized recovery rate and efficiency, thereby realizing economic feasibility.