Abstract:
A low-dropout linear regulator includes an error amplifier which includes a cascaded arrangement of a differential amplifier and a gain stage. The gain stage includes a transistor driven by the differential amplifier to produce at a drive signal for an output stage of the regulator. The transistor is interposed over its source-drain line between a first resistive load included in a RC network creating a zero in the open loop gain of the regulator, and a second resistive load to produce a drive signal for the output stage of the regulator. The second resistive load is a non-linear compensation element to render current consumption linearly proportional to the load current to the regulator. The first resistive load is a non-linear element causing the frequency of said zero created by the RC network to decrease as the load current of the regulator decreases.
Abstract:
A low-dropout linear regulator includes an error amplifier comprising a cascaded arrangement of a differential amplifier and a gain stage having interposed therebetween a frequency compensation network for a loading current to flow therethrough. The regulator includes a current limiter inserted the flow-path of the loading current for the compensation network to increase the slew rate of the output of the differential amplifier by dispensing with the capacitive load in the frequency compensation network during load transients in the regulator.
Abstract:
A low-dropout linear regulator includes an error amplifier which includes a cascaded arrangement of a differential amplifier and a gain stage. The gain stage includes a transistor driven by the differential amplifier to produce at a drive signal for an output stage of the regulator. The transistor is interposed over its source-drain line between a first resistive load included in a RC network creating a zero in the open loop gain of the regulator, and a second resistive load to produce a drive signal for the output stage of the regulator. The second resistive load is a non-linear compensation element to render current consumption linearly proportional to the load current to the regulator. The first resistive load is a non-linear element causing the frequency of said zero created by the RC network to decrease as the load current of the regulator decreases.
Abstract:
A method for drying bulk goods, in particular wood fibers and/or wood chips, wherein the bulk goods is continuously dried in a dryer (1), in particular a drum dryer. The vapor-gas mixture flows through the drum dryer (1) in a dryer circuit and is indirectly heated via at least one heat exchanger (4) by a burner waste gas that is heated in at least one burner (5). The drying vapors are supplied to the at least one heat exchanger (4). Upstream, downstream and/or within the at least one heat exchanger (4), at least a partial flow of the drying vapors are branched off to be conducted into the burner (5). The remaining partial flow is conducted to the dryer (1) again. The partial flow of drying vapors to the burner (5) is driven by at least one regulable partial vapor fan (10).
Abstract:
A logic level converter includes two first electronic switches coupled in a bi-stable flip-flop arrangement having at least one output line, and a forcing circuitry including two second electronic switches to force switching of the first electronic switches in the flip-flop arrangement. The forcing circuitry has an input terminal to receive a logic input signal having a given level to produce switching of the flip-flop arrangement and generate at the output line(s) of the flip-flop arrangement, a logic output signal(s) whose voltage level is converted with respect to the level of the logic input signal. The converter includes, interposed between each of the two first electronic switches in the flip-flop arrangement and a respective one of the second electronic switches in the forcing circuitry, at least one respective cascode electronic switch to limit the voltage across the two first electronic switches in the flip-flop arrangement.
Abstract:
The invention proposes a method for drying bulk goods, in particular wood fibers and/or wood chips, wherein the bulk goods is continuously dried in a dryer (1), in particular a drum dryer. The vapor-gas mixture flows through the drum dryer (1) in a dryer circuit and is indirectly heated via at least one heat exchanger (4) by a burner waste gas that is heated in at least one burner (5). The drying vapors are supplied to the at least one heat exchanger (4). Upstream, downstream and/or within the at least one heat exchanger (4), at least a partial flow of the drying vapors are branched off to be conducted into the burner (5). The remaining partial flow is conducted to the dryer (1) again. The partial flow of drying vapors to the burner (5) is driven by means of at least one regulable partial vapor fan (10).
Abstract:
A logic level converter includes two first electronic switches coupled in a bi-stable flip-flop arrangement having at least one output line, and a forcing circuitry including two second electronic switches to force switching of the first electronic switches in the flip-flop arrangement. The forcing circuitry has an input terminal to receive a logic input signal having a given level to produce switching of the flip-flop arrangement and generate at the output line(s) of the flip-flop arrangement, a logic output signal(s) whose voltage level is converted with respect to the level of the logic input signal. The converter includes, interposed between each of the two first electronic switches in the flip-flop arrangement and a respective one of the second electronic switches in the forcing circuitry, at least one respective cascode electronic switch to limit the voltage across the two first electronic switches in the flip-flop arrangement.
Abstract:
A low-dropout linear regulator includes an error amplifier comprising a cascaded arrangement of a differential amplifier and a gain stage having interposed therebetween a frequency compensation network for a loading current to flow therethrough. The regulator includes a current limiter inserted the flow-path of the loading current for the compensation network to increase the slew rate of the output of the differential amplifier by dispensing with the capacitive load in the frequency compensation network during load transients in the regulator.