摘要:
A system and method are provided for automatically generating an inspiration board. The system and method involves inputting at least one term into a computer system. Based on the inputted term, at least one image is selected from a database of images stored in the computer system and at least one pattern from a database of patterns stored in the computer system. The inspiration board is assembled by the computer system using the image and the pattern.
摘要:
A system and method are provided for automatically generating an inspiration board. The system and method involves inputting at least one term into a computer system. Based on the inputted term, at least one image is selected from a database of images stored in the computer system and at least one pattern from a database of patterns stored in the computer system. The inspiration board is assembled by the computer system using the image and the pattern.
摘要:
A method is disclosed for converting color images to textured monochrome images such that image regions with similar luminance but different chrominance look different when converted to black-and-white to preserve color information therein. This texture-encoded color information can be extracted at a later time to reconstitute the original color image. The present method involves first converting the color image to a luminance-chrominance colorspace. The chrominance data is decomposed into 4 channels of chrominance. A wavelet transformation of the luminance channel is preformed. Scaled chrominance channels are then mapped to a number of wavelet sub-bands. Once mapped, the wavelet transform is inverted to generate textures proportional to the original colors of the color image having an amplitude proportional to the chroma of the original color. The black-and-white image is embedded with this texture information into the image's grayscale component. In order to retrieve the color image from the textured grayscale image, a wavelet transform regenerates the scaled chrominance channels mapped therein. Those wavelet sub-bands comprising embedded chroma are extracted and scaled to the size of the original image. The remaining sub-bands are inverted to produce the Y-image thereof. Separate images now exist in Y, Cr, and Cb. The recombination of the YCbCr images produce the colored image that was previously embedded into the grayscale components of the textured black-and-white image.
摘要:
What is disclosed is a method for determining a hue adjustment to an input hue, Hin, to squeeze the input hue toward a region of preferred hue, Hpref. The method involving defining a change in hue as: ΔH=Hin−Hpref; defining a hue weight as a Gaussian: Hweight=Gaussian(Hpref,Hsigma) wherein the Gaussian function can be alternatively replaced by one of either the sum of two Gaussians or a Gaussian convolved with a Rect function; defining an amount of hue adjustment as: HAdjust=ΔH*Hweight. Then, an output hue is generated by applying the adjustment such that: Hout=Hin−HAdjust.
摘要:
Provided is a method for the automated selection of sample documents or pages from a large collection, and more particularly an application of the method in a proof presentment environment—where the method is employed for selection and review of representative or extreme pages from a large document, such as one scheduled for printing. The method characterizes pages or documents in a multi-dimensional vector space based upon a set of characteristics, and then uses clustering techniques to group the pages, enabling the selection of typical pages from the groups, and/or outlier pages from extremes lying outside of the groups.
摘要:
Provided herein are teachings directed to overcoming the problem of erroneous color reproduction on a color output device such as a color display. The teachings herein provide a method for correcting color image data input to a display device by displaying a target of color patches of known input values on the display device, and capturing an image of the target with a digital camera. This is followed by extracting camera signals from the image which corresponds to the color patches, and deriving a tone response calibration for the projector from the camera signals and the input values.
摘要:
A method is disclosed for determining an adjustment amount to be made to an input chroma, Cin, to squeeze the input chroma toward a region of preferred chroma, Cpref. This method involving first defining a change in chroma as: ΔC=Cin−Cpref and defining a chroma weight as: Cweight=Gaussian(Cpref,Csigma); defining a luminance weight as: Lweight=Gaussian(Lpref,Lsigma); defining a hue weight as: Hweight=Gaussian(Hpref,Hsigma);. Then, an amount of chroma adjustment is: CAdjust=ΔC*(Hweight*Cweight*Lweight). An output chroma is generated by applying chroma adjustment to chroma input: Cout=Cin−CAdjust.
摘要:
A method is disclosed for improving printer characterization tables to best reproduce desired colors on a destination device given the ambient illumination at that device's location. The user determines viewing illumination using a target preferably provided with the printer or alternatively printed directly from the characterized printer. The target comprises metameric color pairs allows which users to quickly determine their approximate viewing illumination by selecting the matching pair. A metameric match of color pairs (metamers) is defined to have equal colorimetric values, XYZ or LAB, for one illumination and differing reflectance spectra. Each color pair corresponds to a different illumination condition. All pairs of metamers which comprise the target are examined to determine which pair is the best match. Targets could be bipartite patches, half-and-half images, readability tasks, or images. The appropriate color-correction transform for the selected illumination is applied. Alternatively the color-correction transform for the selected illumination is modified directly.
摘要:
A method is disclosed for squeezing an input hue, Hin, toward a region of preferred hue, Hpref, having a preferred chroma, Cpref, and luminance, Lpref, to restrict the rotation effect to a point in LCH space rather than an entire hue slice. This method involves defining a chroma weight as: Cweight=Gaussian(Cpref,Csigma); defining a luminance weight as: Lweight=Gaussian(Lpref,Lsigma); defining a hue weight as: Hweight=Gaussian(Hpref,Hsigma); defining an amount of hue adjustment as: HAdjust=ΔH*(Hweight*Cweight*Lweight); and finally, generating an output hue by applying hue adjustment to hue input such that: Hout=Hin−HAdjust.
摘要:
What is disclosed is a decoding method for retrieving information bits encoded in a printed image comprising the steps of first receiving an input electronic image as a scanned version of the printed image. A region of interest in the image is then extracted and, for that region, an amount of K colorant present, denoted KH; is obtained. Further, a color value is generated therefrom and the GCR used for encoding that region is determined using KH and the obtained color value. Encoded information bits are retrieved therefrom based on the determined GCR. The estimated KH is preferably evaluated conditional to a capacity signal KL and a luminance signal L. From the obtained data, values of KH, KL, and L, are derived wherein KH is estimated from a high resolution scan, and KL and L are estimated from a down-scaled image, respectively. The capacity signal KL and the luminance signal L are derived from the obtained color value. Further, the capacity signal, KL is derived by first applying a suitable operator S to reduce the image from scanner resolution to the watermark resolution and then converting the obtained color values to CMY estimates such that KL=min(C,M,Y) Alternatively, K-capacity is derived from the amount, KL, y, comprises first converting the obtained color values to CMY estimates and applying a suitable operator S to reduce the image from scanner resolution to the watermark resolution such that KL=min(S(C),S(M),S(Y)); wherein L is described by a linear combination of scan signals RGB, such that L=k1S(R)+k2S(G)+k3S(B). The value of KH is determined by first converting the obtained color values to CMY estimates. The estimates determine K-colorant amount at each pixel such that: K=min(C,M,Y). A suitable operator S is applied to reduce the image from scanner resolution to the watermark resolution.