摘要:
A semiconductor device comprising a semiconductor substrate, and a plurality of capacitors formed on the semiconductor substrate. The capacitors comprise a plurality of lower electrodes formed on the semiconductor substrate, a ferroelectric film formed continuously covering the plurality of lower electrodes, and an upper electrode formed on the surface of the ferroelectric film, wherein each of the capacitors is formed for each of the plurality of lower electrode.
摘要:
A semiconductor device comprising a semiconductor substrate, and a plurality of capacitors formed on the semiconductor substrate. The capacitors comprise a plurality of lower electrodes formed on the semiconductor substrate, a ferroelectric film formed continuously covering the plurality of lower electrodes, and an upper electrode formed on the surface of the ferroelectric film, wherein each of the capacitors is formed for each of the plurality of lower electrode.
摘要:
A semiconductor device comprising a semiconductor substrate, and a plurality of capacitors formed on the semiconductor substrate. The capacitors comprise a plurality of lower electrodes formed on the semiconductor substrate, a ferroelectric film formed continuously covering the plurality of lower electrodes, and an upper electrode formed on the surface of the ferroelectric film, wherein each of the capacitors is formed for each of the plurality of lower electrodes.
摘要:
A semiconductor device comprising a semiconductor substrate, and a plurality of capacitors formed on the semiconductor substrate. The capacitors comprise a plurality of lower electrodes formed on the semiconductor substrate, a ferroelectric film formed continuously covering the plurality of lower electrodes, and an upper electrode formed on the surface of the ferroelectric film, wherein each of the capacitors is formed for each of the plurality of lower electrode.
摘要:
According to one embodiment, a method of manufacturing a semiconductor device, the method includes forming a pillar on a base layer, forming a insulating layer on the base layer to cover the pillar by using GCIB method, where a lowermost portion of an upper surface of the insulating layer is lower than an upper surface of the pillar, and polishing the insulating layer and the pillar to expose a head of the pillar by using CMP method, where an end point of the polishing is the lowermost portion of the upper surface of the insulating layer.
摘要:
According to one embodiment, a semiconductor memory device includes plural magneto-resistance elements. In the semiconductor memory device, each of the magneto-resistance elements includes: a first magnetic layer formed on a semiconductor substrate, the first magnetic layer having an easy axis of magnetization perpendicular to a film surface thereof; a non-magnetic layer formed on the first magnetic layer; a second magnetic layer formed on the non-magnetic layer, the second magnetic layer having an easy axis of magnetization perpendicular to a film surface thereof; and a sidewall film provided so as to cover a sidewall of each of the magneto-resistance elements with a protective film interposed therebetween, the sidewall film providing a tensile stress to the magneto-resistance element along the easy axis of magnetization.
摘要:
In accordance with an embodiment, a magnetoresistive element includes a lower electrode, a first magnetic layer on the lower electrode, a first diffusion prevention layer on the first magnetic layer, a first interfacial magnetic layer on the first metal layer, a nonmagnetic layer on the first interfacial magnetic layer, a second interfacial magnetic layer on the nonmagnetic layer, a second diffusion prevention layer on the second interfacial magnetic layer, a second magnetic layer on the second diffusion prevention layer, and an upper electrode layer on the second magnetic layer. The ratio of a crystal-oriented part to the other part in the second interfacial magnetic layer is higher than the ratio of a crystal-oriented part to the other part in the first interfacial magnetic layer.
摘要:
According to one embodiment, a semiconductor memory device includes plural magneto-resistance elements. In the semiconductor memory device, each of the magneto-resistance elements includes: a first magnetic layer formed on a semiconductor substrate, the first magnetic layer having an easy axis of magnetization perpendicular to a film surface thereof; a non-magnetic layer formed on the first magnetic layer; a second magnetic layer formed on the non-magnetic layer, the second magnetic layer having an easy axis of magnetization perpendicular to a film surface thereof; and a sidewall film provided so as to cover a sidewall of each of the magneto-resistance elements with a protective film interposed therebetween, the sidewall film providing a tensile stress to the magneto-resistance element along the easy axis of magnetization.
摘要:
A semiconductor device includes a semiconductor substrate, a first insulating film formed on the semiconductor substrate, a charge storage layer formed on the first insulating film, a second insulating film formed on the charge storage layer, and a control electrode formed on the second insulating film, the second insulating film including a lower silicon nitride film, a lower silicon oxide film formed on the lower silicon nitride film, an intermediate insulating film formed on the lower silicon oxide film and containing a metal element, the intermediate insulating film having a relative dielectric constant of greater than 7, an upper silicon oxide film formed on the intermediate insulating film, and an upper silicon nitride film formed on the upper silicon oxide film.
摘要:
In a nonvolatile semiconductor memory device provided with memory cell transistors, each of the memory cell transistors has a tunnel insulating film, a floating gate electrode, an inter-electrode insulating film, and element isolation insulating films respectively. The floating gate electrode on the tunnel insulating film is provided with a first floating gate electrode and a second floating gate electrode formed sequentially from the bottom, the second floating gate electrode being narrower in a channel-width direction than the first one. Levels of upper surfaces of the element isolation insulating films and the first floating gate electrode are the same. The inter-electrode insulating film continuously covers the upper and side surfaces of the floating gate electrode and the upper surfaces of the element isolation insulating films, and is higher in a nitrogen concentration in a boundary portion to the floating gate electrode than in boundary portions to the element isolation insulating films.