Abstract:
A method of forming a transistor (70) in a semiconductor active area (78). The method forms a gate structure (G2) in a fixed relationship to the semiconductor active area thereby defining a first source/drain region (R1) adjacent a first gate structure sidewall and a second source/drain region (R2) adjacent a second sidewall gate structure. The method also forms a lightly doped diffused region (801) formed in the first source/drain region and extending under the gate structure, wherein the lightly doped diffused region comprises a varying resistance in a direction parallel to the gate structure.
Abstract:
A semiconductor device according to one embodiment of the present invention includes: a semiconductor substrate of a first conductive type; a semiconductor layer of the first conductive type formed on the semiconductor substrate; a base layer of a second conductive type formed on the semiconductor layer; a plurality of columns of stripe trenches formed at predetermined intervals from a surface of the base layer by a predetermined depth; insulating films formed on side surfaces and bottoms of the trenches, respectively; source layers of the first conductive type formed on surface layer portions of the base layer between the trenches, respectively; stripe contact layers of the second conductive type formed each at centers of the surface layer portions of the base layer between the trenches, respectively; a gate electrode formed in every other trench among the plurality of columns of trenches; source electrodes formed in the trenches other than the trenches in which the gate electrodes are formed and on the source layers and the contact layers, respectively; and a drain electrode formed on a rear surface of the semiconductor substrate.
Abstract:
A conductor film and a cap insulating film are sequentially formed, and a laminated film constituted of the cap insulating film and the conductor film is patterned, and then a gate electrode is formed. Next, source and drain diffusion regions are formed, and a first silicon nitride film is formed on a sidewall of the laminated film, and then a second silicon nitride film is formed on an entire surface, and further a silicon oxide film is deposited. Next, the silicon oxide film is left between the gate electrodes, and the second silicon nitride film on the laminated film is removed, and the cap insulating film left above the gate electrode is removed, and a metal silicide film is formed on a surface of the gate electrode, and then a third silicon nitride film is left on the gate electrode.
Abstract:
A heat dissipation device having an integral load centering mechanism adapted to provide a location for contact between a spring clip and the heat dissipation device. The load centering mechanism is located in an area on the heat dissipation device which will provide a centered loading to a microelectronic die and constitutes substantially the only place where the spring clip contacts the heat dissipation device when the spring clip is providing a force against the heat dissipation device.
Abstract:
A method of forming a via in an integrated circuit is provided. The method includes forming a stack including a first layer, a hard mask layer, and at least one intermediate layer disposed between the first layer and the hard mask layer. The first layer comprises a first metal line. The method further includes forming a channel in the hard mask layer. The channel has a first side and a second side opposite the first side. The method further includes forming a resist layer having an opening extending over both the first and second sides of the channel. The method further includes forming a metal line trench and a via opening aligned with the first and second sides of the channel. The method further includes filling the filling the metal line trench and the via opening with a conductive material to create a second metal line and a via connecting the second metal line with the first metal line.
Abstract:
Embodiments include a semiconductor device including a well structure such that well areas can be formed with a higher density of integration and a plurality of high-voltage endurable transistors can be driven independently of one another with different voltages, and a method of manufacturing the semiconductor device. The semiconductor device may include a triple well comprising a first well formed in a silicon substrate and having a first conductivity type (P-type), a second well formed in adjacent relation to the first well and having a second conductivity type (N-type), and a third well formed in the second well and having the first conductivity type (P-type). A high-voltage endurable MOSFET is provided in each of the wells. Each MOSFET has an offset area in the corresponding well around a gate insulating layer. The offset area is formed of a low-density impurity layer which is provided under an offset LOCOS layer on the silicon substrate.
Abstract:
In a method for manufacturing an FET having a gate insulation film with an SiO2 equivalent thickness of 2 nm or more and capable of suppressing the leak current to {fraction (1/100)} or less compared with existent SiO2 films, an SiO2 film of 0.5 nm or more is formed at a boundary between an Si substrate (polycrystalline silicon gate) and a high dielectric insulation film, and the temperature for forming the SiO2 film is made higher than the source-drain activating heat treatment temperature in the subsequent steps. As such, a shifting threshold voltage by the generation of static charges or lowering of a drain current caused by degradation of mobility can be prevented so as to reduce electric power consumption and increase current in a field effect transistor of a smaller size.
Abstract:
The nonvolatile semiconductor memory device includes a first conductivity-type semiconductor substrate where an active region is created, a floating gate which is formed on the first conductivity-type semiconductor substrate, and a control gate which is formed on the floating gate. A first conductivity-type high concentration diffused region is formed in the non-overlapping region of the floating gate in the active region.
Abstract:
A semiconductor device and a method for manufacturing the same are provided. The structure of a semiconductor device includes gate electrodes having a T-shaped structure comprised of first and second gate electrodes having low gate resistance and low parasitic capacitance and a halo ion-implanted region in which a short channel effect can be effectively suppressed. The method for manufacturing the device is capable of performing high angle ion implantation without extending gate-to-gate space.
Abstract:
An electrostatic discharge protection circuit. The electrostatic discharge protection circuit utilizes the non-uniform triggering of multi-finger gate-grounded NMOS. The source of the finger which has the potential to trigger on is coupled to the base terminal of all the parasitic bipolar transistor of all the other multi-finger gate-ground NMOS structures. Thus, the finger which has the potential to be triggered can be used as a triggering device to trigger the other finger devices during an ESD event. By using this method, the ESD protection NMOS or PMOS, realized with multi-finger layout structure, can be uniformally triggered on to discharge ESD current. Therefore, it can have a high ESD robustness in a small layout area.