摘要:
A method and a system for controlling the ignition timing of internal combustion engines, or more in particular for preventing engine over-revolutions by reducing the engine speed when it becomes excessively high. The ignition timing control system is realized by a microcomputer, so that when the engine speed exceeds a predetermined high level, ignition stop operations by an ignition stop unit and ignition retard operations by a retarded ignition unit are repeated as many times as determined by the number of cylinders involved to reduce the engine speed. When the engine speed is in a predetermined high range, the ignition retardation is controlled by feedback in accordance with the engine speed, and further controlled in combination with the ignition stop as required. The method and system according to the invention is suitably used for a multi-cylinder internal combustion engine having an ignition system of electronic distribution type with a carburetor and a simultaneous ignition coil.
摘要:
A vehicular information storage device includes an EEPROM, an extracting device which processes and extracts vehicle information, a determination device which determines from among regions set beforehand the region of the extracted information, and a counting device for incrementing a counter in correspondence with the region determined by the determination device. The needed information is extracted properly at a predetermined period along with the determination of the region where such information belongs. Further, the EEPROM used by the system is composed of three data regions with all three data regions set to a reset state at an initial state. The data regions are decremented sequentially at a minimum period required by a measurement parameter. Since updating from "1" to "0" is possible for individual cells and there is no need for resetting, processing time is reduced. Also, when data in one of the data regions is determined to be irregular due to, e.g., a power outage, it can be restored using the count values of the two other data regions.
摘要:
An engine control apparatus includes a microcomputer and receives a signal from a signal source which generates a signal containing a control factor. The microcomputer executes a control program in response to the received signal. The engine control apparatus also includes a signal input circuit designed to be selectively connectable with signal sources of various types. A memory is provided for storing control programs corresponding to the signal sources of the various types respectively. A signal source identifying device is provided for identifying a signal source connected with the signal input circuit. A control program executing device selectively executes a control program corresponding to the signal source identified by the signal source identifying device.
摘要:
Ignition timing for an internal combustion engine is controlled by subtracting a retard correction amount from a basic ignition timing. When engine knocking is detected, the retard correction amount is retarded from the basic ignition timing, but not so that the controlled timing drops below a predetermined limit. If knocking is not detected, the retard correction amount is advanced to thereby control the ignition timing towards, but not exceeding, a knocking limit.
摘要:
A single cylinder engine is equipped with a carburetor having an electrically controlled air bleed control valve. A microcomputer of an electronic controller calculates a target opening timing and a target opening time period of the air bleed control valve. The microcomputer, receiving a rotation pulse from a rotation sensor indicative of an engine rotational position, opens the air bleed control valve at the calculated target opening timing and for the calculated target opening period so that the air bleed control valve controls an amount of air-bleeding which in turn controls an air-fuel ratio of mixture supplied to the engine.
摘要:
The ignition timing of an internal combustion engine is controlled to an optimum by compensating for engine knock. A microcomputer includes a memory for storing steady-state and transient-state ignition timing variables which are derived as a function of an operating condition of the engine. If engine knock occurs during a steady running state, the stored steady-state ignition timing variable is trimmed and if engine knock occurs during a transient state, the stored transient-state ignition timing variable is trimmed. Ignition is caused to occur in response to the stored value of the trimmed steady-state or transient-state ignition variable according to the detected engine condition.
摘要:
Engine parameters are detected to set a basic ignition timing, and this basic ignition timing is forcibly changed to effect feedback control in which engine output is detected for finding an optimum combination of ignition timings of the individual cylinders. Engine is operated with a plurality of different ignition timing combinations, where the number of the combinations equals the number of the cylinders added by one. The engine is further operated with one of the ignition timing combinations so that the engine is operated twice with an identical ignition timing combination. As a result engine output change caused by factors other than ignition timing change is detected. Thus, one of a plurality of ignition timing combinations, which gives the lowest engine speed is found and is replaced with a new ignition timing combination with which the engine produces higher output. The replacement is carried out selectively in accordance with the variation rate of the engine output data. An average value of various ignition timing combinations is used to renew the same. In this way the ignition timing combination is renewed succesively for finding the optimum ignition timing combination.
摘要:
An ignition control for an internal combustion engine accurately determines current engine operational status (acceleration or deceleration) and controls optimally ignition timing. The exemplary system includes a microcomputer, drive circuits for driving ignition coils from outputs of the microcomputer, and a waveform shaping circuit for shaping signal pulses from a crank angle sensor before into the microcomputer. The microcomputer calculates changes in engine speed from wave-shaped signal pulses and determines acceleration rate relative to the maximum attainable acceleration from the speed changes. The microcomputer controls the ignition timing based on the determined acceleration rate. Thus, a complicated throttle link or throttle opening sensor is not necessitated to perform acceleration responsive engine control.
摘要:
Engine parameters are detected to set a basic ignition timing, and this basic ignition timing is forcibly changed to effect feedback control in which engine output is detected for finding an optimum ignition timing. Engine is operated with a plurality of different ignition timings, where the number of the ignition timings is at least two, and engine output data for each ignition timing is measured to find which ignition timing causes a higher engine output. Thus, one of the plurality of ignition timings, which gives the lowest engine speed is replaced with a new ignition timing with which the engine produces higher output. The new ignition timing is computed in such a manner that the new ignition timing is located at a point opposite to the ignition timing giving the lowest engine output with respect to an average ignition timing, while the difference between the average value and the new ignition timing equals a multiple of the difference between the ignition timing giving the lowest engine speed and the average value. In this way the ignition timing is renewed successively for finding the optimum ignition timing.