Abstract:
In at least some implementations, an ignition system for a combustion engine includes analog circuit components arranged to control ignition events at an engine speed below a first threshold of engine speed and a microprocessor to control ignition events at engine speeds higher than the first threshold. Hence, ignition can be controlled at lower engine cranking speeds to facilitate starting the engine at lower engine rotational speeds.
Abstract:
A discharge ignition apparatus for use with a small internal combustion engine has built-in overspeed disable capability. At operating speeds below an overspeed threshold, revolution of a magnet assembly past a stator unit having a magnetically permeable core causes accumulation of charge across a storage capacitor. When the capacitor has reached a fully charged state, a triggering signal is applied to the gate of a SCR device to cause rapid discharge through the primary coil of a step-up transformer. The higher voltage produced at the secondary coil of the step-up transformer is then applied across the gap of a spark plug. At operating speeds exceeding the overspeed threshold, a second trigger circuit renders the SCR conductive prior to substantial accumulation of charge across the storage capacitor. The second trigger circuit includes a zener diode or other voltage threshold element in circuit with a trigger coil operative to produce a speed dependent voltage signal. A high-pass filter, such as a passive RC filter, may be connected interposing the trigger coil and the zener diode to condition the waveform and inhibit accelerated trigger of the SCR at speeds below the overspeed threshold.
Abstract:
A combined electronic ignition and fuel injection system for internal combustion engines utilizes a non-magnetic disk, attached to the engines shaft and rotates with the shaft, and contains permanent magnet along the periphery of the disk at intervals defined by the shaft's position for each cylinder group. The magnets develop voltage timing pulses within pick-ups coils which are connected to circuits for amplifying and shaping the timing signals. The coil driver switch charges the ignition coil and the spark plugs are then fired, then in another cylinder chamber the fuel injectors are opened, and the fuel is injected into the cylinder chamber. This electronic ignition and fuel injection system is an improvement and a simpler system than that which is usually utilized in internal combustion engines, because it does not require the use of a computer or distributor. It is particularly useful in the rotary-reciprocal combustion engines, and may be used in rotary and reciprocal combustion engines.
Abstract:
Electrical pulses are provided to the system as each piston of an automotive engine reaches its top dead center position during a compression stroke. The system measures and stores the time TP which is equivalent to the elapsed between a first and second pulse. The system then measures the current cycle time, TC which is the time accumulating after the second pulse. To this time TC the system instantly adds a predetermined and constant (but adjustable) time advance period, TA. The time TP is fed to a comparator for comparison to the total of the time TA plus the accumulating time TC. When the total of time TA plus the accumulating time TC reaches the value of the time TP, the comparator generates a pulse to fire an automotive ignition coil. When a third pulse arrives the system stores the new value reached by TC as the new TP for the following cycle. Thus, the result of this addition of TA to TC is continuously compared with the stored value of TP, and when the two values coincide ignition is again triggered.
Abstract:
An improved engine ignition system for a marine engine or the like, which provides reliable start-up capability. The system provides two timing characteristics for discharging a capacitive discharge ignition, one of which is advanced relative to the other. The advanced timing is invoked at startup and is switched to regular timing in response to the engine temperature reaching a predetermined temperature from a temperature switch and also as a result of a circuit having a thermistor near the engine. The thermistor circuit may operate if the temperature switch does not, due to debris or the like preventing proper operation of a thermostat.
Abstract:
An internal combustion engine control apparatus for performing the timing control such as ignition and fuel injection timing control with high accuracy even in a transient operation state such as acceleration or deceleration. A ratio between a first interval period extending from a first reference position to a second reference position and a second interval period extending from a second reference position to the first reference position is determined. A correcting coefficient is calculated on the basis of the ratio. By using this correcting coefficient, the predicted reference position period is calculated, on the basis of which the timing control is performed.
Abstract:
A method of an electronic engine control for an internal combustion engine having a plurality of cylinders, wherein the very same air fuel ratio feed back coefficient obtained at a predetermined sequential timing which has been used for calculating the amount of fuel to be injected to a specific cylinder is also used for correcting timing of ignition for the same cylinder which follows immediately after the calculated amount of fuel has been injected into the specific cylinder, thereby the engine torque fluctuation is effectively suppressed, stability of engine operation during idling operation is improved and the surge during a low speed running is prevented.
Abstract:
An ignition method and system for internal combustion engines, especially in lawn mowers or chain saws, in which a magneto induces a plurality of alternating voltage half-waves for each engine revolution to charge an energy-storing element and to discharge it by a switch controlled by the primary coil of an ignition transformer. The switch is actuated when the first half-wave of each revolution reaches a trigger threshold. The ignition system induces the charging alternating voltage dependent upon the rotary position of the engine for the energy storage element and for discharging it via the switch for firing the spark synchronously with the alternating voltage. The system has a timer module which responds to the alternating voltage by producing a signal to block the ignition switch for the duration of a time interval which corresponds to a top speed limit of the internal combustion engine.
Abstract:
An ignition timing control apparatus is disclosed which controls ignition timing of an internal combustion engine which is used with a marine vehicle. The apparatus, which controls ignition timing in dependence upon the opening degree of a throttle valve, includes a retardation moderating circuit for gradually changing the output of the throttle sensor when the throttle valve is driven in the closing direction, thereby preventing the engine from stalling during sudden decelerations of the engine.
Abstract:
A system and a method for detecting an engine revolution speed, identifying engine cylinders, and controlling an engine operation according to the detected engine revolution speed and identified engine cylinders in which a crank angle sensor includes a rotor plate which rotates in synchronization with a rotation of an engine crankshaft, a plurality of first slits whose number corresponds to the number of cylinders and which are mutually arranged at equal intervals along the circumferential direction of the rotor plate, and second slit, both first and second slits being aligned on the same circumferential direction, the sensor outputting a pulse train signal including a first signal corresponding to a first crank angle position before a top dead center in a compression stroke and a second signal corresponding to a second crank angle position after the top dead center in the compression stroke of a first engine cylinder and a microcomputer executes a fuel injection quantity and/or ignition timing control on the basis of the first and second signals derived by the crank angle sensor.