摘要:
It was revealed that the intravenous administration of HMGB-1 and S100A8 promoted the healing of skin ulcer by recruiting bone marrow-derived cells to the site of skin ulcer. Furthermore, when HMGB-1 was intravenously administered to cerebral infarction model mice after creation of cerebral infarction, bone marrow-derived cells expressing nerve cell markers were detected in their brain. A marked cerebral infarct-reducing effect was observed in mice intravenously administered with HMGB-1 as compared to the control. The post-cerebral infarction survival rate was increased in the intravenous HMGB-1 administration group. The involvement of bone marrow pluripotent stem cells in the process of bone fracture healing was assessed using mice, and the result demonstrated that bone marrow-derived cells distant from the damaged site migrated to the bone fracture site to repair the damaged tissue.
摘要:
It was revealed that the intravenous administration of HMGB-1 and S100A8 promoted the healing of skin ulcer by recruiting bone marrow-derived cells to the site of skin ulcer. Furthermore, when HMGB-1 was intravenously administered to cerebral infarction model mice after creation of cerebral infarction, bone marrow-derived cells expressing nerve cell markers were detected in their brain. A marked cerebral infarct-reducing effect was observed in mice intravenously administered with HMGB-1 as compared to the control. The post-cerebral infarction survival rate was increased in the intravenous HMGB-1 administration group. The involvement of bone marrow pluripotent stem cells in the process of bone fracture healing was assessed using mice, and the result demonstrated that bone marrow-derived cells distant from the damaged site migrated to the bone fracture site to repair the damaged tissue.
摘要:
(Objective) An objective of the present invention is to provide therapeutic agents that, in association with stimulation of PDGFRα-positive cells such as bone marrow mesenchymal stem cells, promote their mobilization into blood and accumulation in a damaged tissue, and induce tissue regeneration in a living body.(Means for solution) Multiple peptides were synthesized, and the migration-promoting activity of each peptide was evaluated. As a result, the present inventors successfully identified multiple peptides that have migration-promoting activity on a PDGFRα-positive bone marrow mesenchymal stem cell line (MSC-1). Further, the present inventors confirmed that the identified peptides also have migration-promoting activity on skin fibroblasts, which are PDGFRα-positive cells.
摘要:
(Objective) An objective of the present invention is to provide therapeutic agents that, in association with stimulation of PDGFRα-positive cells such as bone marrow mesenchymal stem cells, promote their mobilization into blood and accumulation in a damaged tissue, and induce tissue regeneration in a living body.(Means for solution) Multiple peptides were synthesized, and the migration-promoting activity of each peptide was evaluated. As a result, the present inventors successfully identified multiple peptides that have migration-promoting activity on a PDGFRα-positive bone marrow mesenchymal stem cell line (MSC-1). Further, the present inventors confirmed that the identified peptides also have migration-promoting activity on skin fibroblasts, which are PDGFRα-positive cells.
摘要:
(Objective) An objective of the present invention is to provide therapeutic agents that, in association with stimulation of PDGFRα-positive cells such as bone marrow mesenchymal stem cells, promote their mobilization into blood and accumulation in a damaged tissue, and induce tissue regeneration in a living body.(Means for solution) Multiple peptides were synthesized, and the migration-promoting activity of each peptide was evaluated. As a result, the present inventors successfully identified multiple peptides that have migration-promoting activity on a PDGFRα-positive bone marrow mesenchymal stem cell line (MSC-1). Further, the present inventors confirmed that the identified peptides also have migration-promoting activity on skin fibroblasts, which are PDGFRα-positive cells.