摘要:
An MR imaging method wherein motion of an object to be imaged is examined during a preparation phase preceding the actual MR examination. The necessary sequences for the subsequent MR examination are modified during the examination to compensate for the motion based on motion parameters calculated during the preparation phase or motion parameters derived from the motion parameters calculated during the preparation phase based on a correlation between the motion parameters.
摘要:
A device for determining the position of a medical instrument that is introduced into an object to be examined is also used for imaging the vicinity of the medical instrument. In order to enable the acquisition of instantaneous position information and image information from the vicinity of the medical instrument for all kinds of medical instruments, a localization device that is arranged in the end zone of the medical instrument that is to be introduced determines the position of the medical instrument within the object to be examined; at the same time image information is acquired in the vicinity of the medical instrument by an image acquisition device that is arranged on the medical instrument and on the basis of the position thus determined the position of the medical instrument (3) is reproduced in a survey image of the object to be examined and images of the vicinity of the object to be examined are displayed on the basis of the image information acquired.
摘要:
A magnetic resonance examination system has an object carrier (14) to move an object to be examined relative to the field of view. A monitoring system (33) monitors examination circumstances under which magnetic resonance signals are acquired from the object within the field of view. In particular the monitoring system monitors the degree of physiological motion in the patient to be examined. A velocity control system (32) to control the velocity of the movement of the object relative to the field of view and to control the velocity on the basis of the monitored examination circumstances, i.e. the degree of physiological motion.
摘要:
A continuous moving table magnetic resonance imaging method is proposed where a ‘lateral’ read out is performed that is transverse to the direction of motion. This magnetic resonance imaging method for imaging a moving object includes spatially selective RF excitations are applied for respective phase-encodings. The sub-volume is excited by the spatially selective RF excitation moves with the motion of the object for respective subsets of primary phase-encodings. Acquisition of magnetic resonance signals is performed from a three-dimensional sub-volume of the object. The magnetic resonance signals are read encoded in a direction transverse to the direction of motion of the object and phase-encoded in at least the direction of motion of the object.
摘要:
During continuous moving of an imaging subject (12) through a scanner field of view (20), k-space data are acquired using a plurality of radio frequency coils (24, 26). The acquiring includes undersampling of k-space in at least one undersampled direction. A weighted transform (62) from k-space to real space is defined for at least one undersampled direction. The weighted transform incorporates patient position-dependent coil sensitivity weighting factors and a Fourier transform. The acquired k-space data are hybrid transformed along the direction of continuous moving to define hybrid space data having a real space dimension in the transformed direction of continuous moving and a k-space dimension in a transverse direction that is transverse to the direction of continuous moving. The hybrid space data are transformed along the transverse direction to generate a reconstructed image. The hybrid transforming and the transforming employ the defined weighted transform (62) conditional upon the corresponding direction being undersampled.
摘要:
A plurality of global receive coils (24a, 24b, 24c) are stationarily positioned around a fixed field of view (FOV) of a magnetic resonance diagnostic imaging device (10). Each global receive coil receives undersampled phase and frequency encoded data from the stationary field of view. A subject is imaged as it moves continuously through the fixed field of view such that data is collected over a virtual field of view (vFOV) of the subject which is longer than the field of view in a longitudinal direction of subject motion. Centrally encoded k-space data, acquired from each of the global receive coils, is used to generate coil sensitivity patterns (42) which are mapped (44) from the stationary field of view to the virtual field of view. A SENSE reconstruction processor (54) performs a SENSE reconstruction on the virtual field of view data in which reconstructed data is combined and unfolded in accordance with the virtual field of view sensitivity patterns (48) to generate a virtual field of view image representation (60).
摘要:
A plurality of global receive coils (24a, 24b, 24c) are stationarily positioned around a fixed field of view (FOV) of a magnetic resonance diagnostic imaging device (10). Each global receive coil receives undersampled phase and frequency encoded data from the stationary field of view. A subject is imaged as it moves continuously through the fixed field of view such that data is collected over a virtual field of view (vFOV) of the subject which is longer than the field of view in a longitudinal direction of subject motion. Centrally encoded k-space data, acquired from each of the global receive coils, is used to generate coil sensitivity patterns (42) which are mapped (44) from the stationary field of view to the virtual field of view. A SENSE reconstruction processor (54) performs a SENSE reconstruction on the virtual field of view data in which reconstructed data is combined and unfolded in accordance with the virtual field of view sensitivity patterns (48) to generate a virtual field of view image representation (60).
摘要:
A continuous table motion magnetic resonance imaging system includes a processor (70) for determining values of scan parameters including at least a subject velocity, a field of view length in the direction of the table velocity, and a preparation sequence time. The acquisition includes performing one or more preparatory operations (54) to manipulate image contrast or to update scanning parameters during table motion. A table (16) is provided for continuously moving a supported imaging subject at the determined velocity. A magnetic resonance imaging scanner (10) through which the table continuously moves the subject acquires magnetic resonance imaging data of the imaged subject during the continuous moving using the determined scan parameters. A reconstruction processor (30, 34, 40) reconstructs the acquired data into an image of the field of view.
摘要:
A continuous table motion magnetic resonance imaging system includes a processor (70) for determining values of scan parameters including at least a subject velocity, a field of view length in the direction of the table velocity, and a preparation sequence time. The acquisition includes performing one or more preparatory operations (54) to manipulate image contrast or to update scanning parameters during table motion. A table (16) is provided for continuously moving a supported imaging subject at the determined velocity. A magnetic resonance imaging scanner (10) through which the table continuously moves the subject acquires magnetic resonance imaging data of the imaged subject during the continuous moving using the determined scan parameters. A reconstruction processor (30, 34, 40) reconstructs the acquired data into an image of the field of view.
摘要:
The invention relates to an MR method wherein disturbing MR signals from peripheral regions outside the isocenter are suppressed in that a location-dependent, brief, steady magnetic field is produced simultaneously with an RF pulse. When the field strength of the magnetic field in the peripheral regions is either larger or smaller than that at the isocenter, it can be achieved that exclusively the nuclear magnetization in the peripheral regions is excited, which magnetization can subsequently be dephased. The subsequent MR sequence then influences only the region around the isocenter.